梯度金属多孔材料、有序金属多孔材料及纳米金属多孔材料既具备金属材料的优良特性,又因内部大量特征孔隙结构的存在而拥有不同的功能特性,在工程中得到广泛的应用。本文主要介绍了上述几种具有特征孔隙结构金属多孔材料的制备方法及其相关应用情况。 Gradient metallic porous materials, ordered metallic porous materials and nanoporous metals possess not only the excellent properties of metallic materials, but also different functional prop-erties due to the presence of interior characteristic pore structures, and are widely used in engi-neering. In this paper, the preparation methods and applications of metallic porous materials with characteristic pore structures are introduced.
何 达,刘如铁,陈 洁,邹俭鹏. 特征孔结构金属多孔材料的制备方法及其应用Preparation and Application of Metallic Po-rous Materials with Characteristic Pore Structures[J]. 冶金工程, 2016, 03(04): 165-172. http://dx.doi.org/10.12677/MEng.2016.34022
参考文献 (References)References
Qin, J.H., Chen, Q., Yang, C.Y. and Huang, Y. (2016) Research Process on Property and Application of Metal Porous Materials. Journal of Alloys and Compounds, 654, 39-44. https://doi.org/10.1016/j.jallcom.2015.09.148
Garcia-Moreno, F., Mukherjee, M., Solorzano, E. and Banhart, J. (2010) Metal Foams towards Microcellular Materials, International Journal of Materials Research, 101, 1134-1139. https://doi.org/10.3139/146.110385
汪强兵, 汤慧萍, 杨保军, 等. 连续梯度金属多孔材料的研究[J]. 中国材料进展, 2016, 35(2): 136-140.
陈刚, 高海燕, 贺跃辉, 等. 梯度孔径FeAl金属间化合物多孔材料的制备与性能[J]. 粉末冶金材料科学与工程, 2011, 16(1): 44-49.
何薇. 梯度孔径TiAl金属间化合物多孔材料制备技术的研究[D]: [硕士学位论文]. 长沙: 中南大学, 2009.
Suk, M.-J., Seo, W.-S. and Kwon, Y.-S. (2007) Fabrication of Graded Porous Structure with Pore Size Distribution by SPS Process. Materials Science Forum, 534-536, 965-968. https://doi.org/10.4028/www.scientific.net/MSF.534-536.965
杨保军, 奚正平, 汤慧萍, 等. 梯度多孔金属材料制备及应用的研究进展[J]. 粉末冶金工业, 2008, 18(2): 28-32.
Mao, X.G. and Sun, D. (2010) Graded/Gradient Porous Biomaterials. Materials, 3, 26-47. https://doi.org/10.3390/ma3010026
Traini, T., Mangano, C. and Sammons, R.L. (2008) Direct Laser Metal Sintering as a New Approach to Fabrication of an Isoelastic Functionally Graded Material for Manufacture of Porous Titanium Dental Implants. Dental Materials, 24, 1525-1533. https://doi.org/10.1016/j.dental.2008.03.029
Torres, Y., Trueba, P. and Pavn, J.J. (2016) Design, Processing and Characterization of Titanium with Radial Graded Porosity for Bone Implants. Materials and Design, 110, 179-187. https://doi.org/10.1016/j.matdes.2016.07.135
李述军, 等. 新型医用β钛合金组织与性能的研究[D]. 沈阳: 中国科学院金属研究所, 2004.
孙涛, 奚正平, 汤慧萍, 等. 过滤用粉末烧结梯度多孔材料[J]. 稀有金属材料与工程, 2008, 37(4): 509-513.
李增峰, 葛渊, 张焓亮, 等. 多孔梯度金属膜在果汁生产中的应用探索[J]. 稀有金属材料与工程, 2010, 39(1): 248-250.
王志阳, 沈以赴, 等. Gasar工艺及其衍生技术的研究进展[J]. 金属功能材料, 2010, 17(3): 91-94.
Shapovalov, V.I. (1993) Method for Manufacturing Porous Articles. USA Patent No. 5181549.
Simone, A.E. and Gibson, L.J. (1997) Efficient Structural Components Using Porous Metals. Materials Science and Engineering A, 229, 55-62. https://doi.org/10.1016/S0921-5093(96)10842-X
Liu, Y., Li, Y., Wan, J. and Zhang, H. (2005) Evaluation of Porosity in Lo-tus-Type Porous Magnesium Fabricated by Metal/Gas Eutectic Unidirectional Solidification. Materials Science and Engineering A, 402, 47-54. https://doi.org/10.1016/j.msea.2005.03.107
Nakajima, H. (2007) Fabrication, Properties and Application of Porous Metals with Directional Pores. Progress in Materials Science, 52, 1091-1173. https://doi.org/10.1016/j.pmatsci.2006.09.001
李言祥, 周荣, 等. 定向凝固金属-气体共晶的研究进展[J]. 特种铸造及有色合金, 2008(s1): 13-17.
陈刘涛, 张华伟, 等. 定向凝固多孔Cu热沉传热性能的实验研究[J]. 金属学报, 2012, 48(3): 329-333.
吴健, 刘源, 李言祥, 等. 藕状多孔铜微通道热沉的散热性能优化研究[J]. 制冷学报, 2016, 37(3): 94-99.
彭震. 结构参数对规则多孔铜力学行为的影响昆明[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2011.
Nakajima, H., Hyun, S.K., Ohashi, K., Ota, K. and Murakami, K. (2001) Fabrication of Porous Copper by Unidirectional Solidification under Hydrogen and Its Properties. Colloid and Surfaces A, 179, 209-214. https://doi.org/10.1016/S0927-7757(00)00639-7
Shapovalov, V. and Bo Yko, L. (2000) Advantages of Gasar-Materias for Brake Shoes and Plates. 18th Annual Brake Colloquium and Engineering Display, San Diego, 1-4 October 2000.
丁轶, 等. 纳米多孔金属: 一种新型能源纳米材料[J]. 山东大学学报(理学版), 2011, 46(10): 122-133.
Ding, Y. and Chen, M. (2009) Nanoporous Metals for Catalytic and Optical Applications. MRS Bulletin, 34, 569-576. https://doi.org/10.1557/mrs2009.156
Li, Z., Zhou, S., Li, H., Si, W. and Ding, Y. (2009) Determination of Ligament Size Dis-tribution of Nanoporous Gold by Scanning Electron Microscopy and Image Analysis. Journal of Nanoscience and Nanotechnology, 9, 1651-1654. https://doi.org/10.1166/jnn.2009.C224
LI, Q., Zhang, Y., Chen, G., Fan, J., Lan, H. and Yang,Y. (2010) Ultra-Low-Gold Loading Au/CeO2 Catalysts for Ambient Temperature CO Oxidation: Effect of Preparation Conditions on Surface Composition and Activity. Journal of Catalysis, 273, 167-176. https://doi.org/10.1016/j.jcat.2010.05.008
Xie, X.W., Li, Y., Liu, Z.Q., Haruta, M. and Shen, W.J. (2009) Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature, 458, 746-749. https://doi.org/10.1038/nature07877
李倩倩. 纳米多孔金属在电化学检测和气相催化中的应用[D]: [硕士学位论文]. 济南: 山东大学, 2011.
张文彦, 奚正平, 方明, 等. 纳米孔结构金属多孔材料研究进展[J]. 稀有金属材料与工程, 2008, 37(7): 1129- 1133.
Wittstock, A., Neumann, B. and Schaefer, A. (2009) Nanoporous Au: An Unsupported Pure Gold Catalyst. Physical Chemistry, 113, 5593-5600. https://doi.org/10.1021/jp808185v
Xu, C.X., Xu, X.X. and Su, J.X. (2007) Research on Un-supported Nanoporous Gold Catalyst for CO Oxidation. Journal of Catalysis, 252, 243-248. https://doi.org/10.1016/j.jcat.2007.09.016
Yan, M., Jin, T.N., Chen, Q. and Ho, H.E. (2013) Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. Organic Letters, 15, 1484-1487. https://doi.org/10.1021/ol400229z
Liu, J., Cao, L. and Huang, W. (2011) Preparation of AuPt Alloy Foam Films and Their Superior Electrocatalytic Activity for the Oxidation of Formic Acid. ACS Applied Materials & Interfaces, 3, 3552-3558. https://doi.org/10.1021/am200782x
汪强兵, 汤慧萍, 奚正平. 金属膜材料的制备和应用[C]//中国金属学会. 2007中国钢铁年会论文集. 北京: 冶金工业出版社, 2007.