地球椭球面上的经线交于极点而纬线则相互平行。地图上的经纬网是地球椭球面上的经纬网的拓扑映射。投影网中极点到坐标原点的距离函数关联着7类常规地图投影的分类。距离等于零时对应着方位投影;距离为有限由于精确传播特征表达式较复杂,不利于参数反演,因此有必要推导其近似的线性表达式,本文主要完成了三个方面的工作:用摄动法求解Christoffel方程,进一步用确定了 qp、 qs波的相速度、偏振向量;推导了极端弱各向异性介质中 qP、 qS波群速度的一阶表达式,并对已有的研究成果进行了补充和完善;在极端各向异性表达式的基础上,推导了VTI、HTI介质中的地震波属性表达式。 Due to the complexity of the exact propagation characteristic expression, it is not conducive to the parameter inversion, so it is necessary to derive its approximate linear expression. This paper mainly completes three aspects of the work: phase velocity and polarization vector of the wave are determined further by solving Christoffel equation using perturbation method; the first-order expressions of qpand qswave group velocities in extremely weakly anisotropic media are deduced, and the existing research results are supplemented and improved; the expressions of seismic wave attributes in VTI and HTI media are deduced based on the expression of extreme anisotropy.
摄动法,弱各向异性,VIT,HTI,偏振向量, Perturbation
Weak Anisotropy
VIT
HTI
Polarization Vector
基于摄动法的弱各向异性介质地震 波传播特征近似
何现启,彭凌星. 基于摄动法的弱各向异性介质地震波传播特征近似 Approximation of Seismic Wave Propagation in Weak Anisotropic Media Based on Perturbation Method[J]. 地球科学前沿, 2016, 06(06): 467-475. http://dx.doi.org/10.12677/AG.2016.66049
参考文献 (References)References
Behura, J. and Tsvankin, I. (2009) Reflection Coefficients in Attenuative Anisotropic Media. Geophysics, 74, WB193- WB202. https://doi.org/10.1190/1.3142874
Byun, B.S. (1982) Seismic Parameters for Media with Elliptical Velocity Dependencies. Geophysics, 47, 1621-1626. https://doi.org/10.1190/1.1441312
Byun, B.S. (1984) Seismic Parameters for Transversely Isotropic Media. Geophysics, 49, 1908-1914. https://doi.org/10.1190/1.1441603
Hanyga, A. and Seredyňska, M. (1999) Asymptotic Ray Theory in Poro- and Viscoelastic Media. Wave Motion, 30, 175-195. https://doi.org/10.1016/S0165-2125(98)00053-5
刘财, 张智, 邵志刚, 等. 线性粘弹体中地震波场伪谱法模拟技术[J]. 地球物理学进展, 2005, 20(3): 640-644.
郭智奇, 刘财, 杨宝俊, 等. 粘弹各向异性介质中地震波场模拟与特征[J]. 地球物理学进展, 2007, 22(3): 804- 810.
刘财. 黏弹各向异性介质中波的反射与透射问题分析[J]. 地球物理学报, 2007, 50(4): 1216-1224.
孙银行. 弱各向异性介质弹性波的准各向同性近似正演模拟[J]. 地球物理学进展, 2008, 23(4): 1118-1123.
吴国忱, 梁锴, 印兴耀. TTI介质弹性波相速度与偏振特征分析[J]. 地球物理学报, 2010, 53(8): 1914-1923.
孙福利, 杨长春, 陈雨红, 等. 弱各向异性介质中qP波的一阶射线追踪[J]. 地球物理学进展, 2009, 24(1): 35-41.
吴萍, 杨长春, 王真理, 等. HTI介质中的反射纵波方位属性[J]. 地球物理学进展, 2009, 24(3): 944-950.
郝奇, 何樵登, 王德利用改进的摄动理论研究各向异性弱粘弹性介质中的非均匀平面波[J]. 吉林大学学报(地学版), 2010, 40(1): 195-202.
梁锴. TI介质中地震波的传播特征与正演方法研究[D]: [博士学位论文]. 北京: 中国石油大学, 2009: 185-195.
Jech, J. and Psencik, I. (1989) First-Order Perturbation Method for Anisotropic Media. Geophysical Journal International, 99, 369-376. https://doi.org/10.1111/j.1365-246X.1989.tb01694.x
Farra, V. and Pšenčík, I. (2003) Properties of the Zeroth-, First-, and Higher Order Approximations of Attributes of Elastic Waves in Weakly Anisotropic Media. Journal of the Acoustical Society of America, 114, 1366-1378. https://doi.org/10.1121/1.1591772
Psencık, I. and Gajewski, D. (1998) Polarization, Phase Velocity, and NMO Velocity of qP-Waves in Arbitrary Weakly Anisotropic Media. Geophysics, 63, 1754-1766. https://doi.org/10.1190/1.1444470
Owack, R. and Peneik, I. (1991) Perturbation from Isotropic to Anisotropic Heterogeneous Media in the Ray Approximation. Geophysical Journal International, 106, 1-10. https://doi.org/10.1111/j.1365-246X.1991.tb04597.x
Vavryčuk, V. (2009) Weak Aniso-tropy-Attenuation Parameters. Geophysics, 74, WB203-WB213. https://doi.org/10.1190/1.3173154
Auld, B.A. (1973) Acoustic Waves and Fields in Solids. JohnWiley & Sons Inc., Ho-boken.
Ohanian, V., Syder, T.M. and Carcione, J. (2006) Weak Elastic Anisotropy by Perturbation Theory. Geophysics, 71, D45-D58. https://doi.org/10.1190/1.2194520
Gajewski, D. and Pšenčík, I. (1996) QP-Wave Phase Velocities in Weakly Anisotropic Media-Perturbation Approach. SEG Technical Program Expanded Abstracts, 1507-1510. https://doi.org/10.1190/1.1826403
Farra, V. (2004) Improved First-Order Approximation of Group Velocities in Weakly Anisotropic Media. Studia Geophysica et Geodaetica, 48, 199-213. https://doi.org/10.1023/B:SGEG.0000015592.36894.3b
Thomsen, L (1986) Weakly Elastic Anisotropy. Geophysics, 51, 1954-1966. https://doi.org/10.1190/1.1442051
何现启. VTI介质中地震波的传播特征研究[J]. 地球物理学进展, 2009, 24(4): 1291-1298.
Sena, A.G. (1991) Seismic Traveltime Equations for Azimuthally Anisotropic and Isotropic Media: Estimation of Interval Elastic Properties. Geophysics, 56, 2090-2101. https://doi.org/10.1190/1.1443021
何现启. EDA介质中地震波的传播特征及参数反演研究[D]: [博士学位论文]. 长沙: 中南大学, 2010.
赵爱华, 丁志峰, 廖武林, 高武平. 弱各向异性介质地震波群速度的射线角近似表示[C]//中国地球物理学会. 中国地球物理第二十一届年会论文集. 长春: 吉林大学出版社, 2005: 1.
王观石, 郭媛, 胡世丽, 等. 岩石粘性系数的测试方法[J]. 地球物理学进展, 2014, 29(5): 2411-2415.
洪启宇. 地震波在粘弹性各向异性地壳介质中的传播及其应用研究[D]: [博士学位论文]. 北京: 中国地震局地球物理研究所, 2016.
Zhu, Y. (2006) Seismic Wave Propagation in Attenuative Anisotropic Media. PhD Thesis, Colorado School of Mines, Golden.
Vavryčuk, V. (2015) Determination of Parameters of Viscoelastic Anisotropy from Ray Velocity and Ray Attenuation: Theory and Numerical Modeling. Geophysics, 80, C59-C71. https://doi.org/10.1190/geo2014-0355.1
Bai, T. and Tsvankin, I. (2016) Access Denied Time-Domain Finite-Difference Modeling for Attenuative Anisotropic Media. Geophysics, 81, C69-C77. https://doi.org/10.1190/geo2015-0424.1