抑郁症是一种高患病率和高致残率的精神疾病,以情绪低落为主要特征,经临床治疗后复发率高。研究证明抑郁症患者存在广泛的脑网络的异常。本文通过梳理了大量的国内外相关文献,发现抑郁症患者的发病脑机制集中在大脑的中线脑区。由于抑郁症患者,尤其是重度抑郁症患者的脑功能和结构都发生了病变,因此治疗抑郁症不仅要消除症状,更要关注的是患者的脑功能以及脑结构的恢复。本文从这个角度对抑郁症的未来研究及治疗进行了展望。 Depression is a mental illness with high prevalence and morbidity, low mood is the main charac-teristics, and the recurrence rate is high after clinical treatment. A large number of studies have found the abnormalities of brain networks among patients with depression. From consulting a lot of studies, we found that the lesion brain mechanism of depression distributed in brain midline areas. Because of the lesion of brain function and brain structure of patients with depression, especially major depressive disorder, so depression treatments do not stop with the symptoms relieving; the key step is the improvement of brain function and brain structure. From the view, we discussed the study and therapy of depression in the future.
抑郁症,脑机制,中线脑区, Depression
Brain Mechanism
Brain Midline Areas
抑郁症发病的脑机制研究:来自大脑中线脑区的证据
van Tol等人(2013)对25名重度抑郁症(Major Depressive Disorder MDD)和25名正常被试进行研究,研究显示MDD的内侧前额皮层(mPFC),腹外侧前额皮层(VLPFC)以及腹侧纹状体与前额盖凸显网络(fronto-opercular salience network, FOSN)的功能连接降低(van Tol et al., 2013)。Bluhm等人(2009)对早期抑郁症患者的DMN进行研究,以楔前叶/后扣带回(Pcu/PCC)为种子点进行功能连接分析,结果显示早期抑郁病人的楔前叶/后扣带回与双侧尾状核的功能连接降低,尾状核与动机和奖赏行为有关,DMN与尾状核的功能连接降低可能是MDD的早期表现(Bluhm et al., 2009)。凸显网络(SN)由额岛皮层(frontoinsular cortex, FIC)、背侧前扣带回(dorsalACC, dACC)和背外侧前额皮层(DLPFC)等脑区域组成,主要负责辨别内外环境刺激完成注意捕获(Jilka et al., 2014),SN调节执行网络(executive network, EN)和DMN之间的关系,根据外部任务需求完成EN和DMN之间的切换(Goulden et al., 2014; He et al., 2014)。MDD患者mPFC、VLPFC及腹侧纹状体与FOSN功能连接的降低,暗示抑郁症患者SN的调节作用存在异常。海马是与记忆和学习相关的重要的脑结构。抑郁症患者海马功能受损存在严重的偏侧化现象,常常是左侧海马功能受损,左海马的局部一致性(regional homogeneity, ReHo)升高(王丽et al., 2010)。
2.3. 抑郁症患者脑区结构的异常
抑郁症患者不仅存在脑功能的异常,而且脑结构也有一定的改变。早在1999年,Rajkowska等人的尸检报告就显示抑郁症病人前额叶皮质存在神经元体积的丢失和神经元胶质细胞数量的减少(Rajkowska et al., 1999)。
van Tol等人采用基于体素优化形态学(Optimization voxel-based morphometry, OVBM)分析显示抑郁症病人额下回及扣带回脑体积有所减小(van Tol et al., 2010),右侧额中回、右侧额上回、左侧额下回及左侧额上回灰质密度也有所降低(张江华,肖晶,朱雪玲,王湘,姚树桥,2011),而且抑郁症患者灰质减少的区域与抑郁症患者功能网络异常的区域像是一致的(Grieve, Korgaonkar, Koslow, Gordon, & Williams, 2013)。
Salvadore等人采用基于体素的形态学分析(voxel-based morphometry, VBM)对发作期抑郁症、缓解期抑郁症和健康控制组进行研究,研究发现与健康对照组相比,发作期患者背前外侧前额叶皮层(dorsal anterolateral prefrontal cortex, DALPFC),背内侧前额叶皮层(dorsomedial prefrontal cortex, DMPFC),腹外侧前额叶皮层(ventrolateral prefrontal cortex, VLPFC)灰质显著减少,与缓解期的患者相比,发作期的患者DALPFC,VLPFC,ACC,楔前叶和顶下小叶灰质显著减少(Salvadore et al., 2011)。抑郁症患者在症状改善的同时,脑功能和脑结构也有所好转,DALPFC和VLPFC灰质增加说明抑郁症患者正在康复中。Caetano等人研究发现,与正常健康人相比,发作期的抑郁症患者双侧前扣带回(ACC)和后扣带回(PCC)的体积显著减小,缓解期患者左侧ACC显著减小(Caetano et al., 2006)。所以左侧ACC可能是抑郁症患者受损较为严重的脑区。
抑郁症病人的海马结构的灰质密度也会降低或体积减小(Joshi et al., 2016),早在1996年Sheline就报告了抑郁症患者海马体积的减小,他们对处于缓解期的10名抑郁症患者进行磁共振(MRI)的扫描,结果显示左侧海马体积减少15%,右侧海马体积减少12% (Sheline, Wang, Gado, Csernansky, & Vannier, 1996),左右两侧海马体积的减少可能与抑郁症的严重程度以及抑郁症的病程有关,可能是首先是左侧海马受损,随着病情的加重,右侧海马也开始出现病变,病情越严重的抑郁症患者的海马萎缩或海马灰质减少的越多。Murphy等人(2007)研究发现抑郁症患者额叶、颞叶及顶叶某些区域脑白质纤维完整性的受损(Murphy et al., 2007)。
其次,重度抑郁症患者对情绪面孔的加工存在年龄和性别的差异(Briceño et al., 2015) ,MDD的年轻女性患者和老年男性MDD,与他们相同性别的健康被试相比,他们在前额、边缘系统和基底神经节等上有超激活(hyperactivation)。但是老年女性MDD和年轻男性MDD,与他们相同的性别的健康被试相比,他们在前额、边缘系统和基底神经节等脑区上呈现去激活(hypoactivation)。提示MDD在情绪加工回路上存在性别和年龄差异,在老年MDD中性别差异机制可能是认知–情绪障碍的基础。未来在抑郁症的研究和治疗中,应考虑个体的性别和年龄差异。
刘 永,裘吉成,何雨霞,孟亚运,袁 宏,雷 旭. 抑郁症发病的脑机制研究:来自大脑中线脑区的证据 The Brain Mechanism of Depression: Evidence from the Brain Midline Areas[J]. 心理学进展, 2016, 06(11): 1166-1173. http://dx.doi.org/10.12677/AP.2016.611147
参考文献 (References)References
王丽, 姚志全, 卢青, 刘海燕, 陈景旭, 卞清涛(2010). 重度抑郁症症状缓解前后海马局部一致性研究. 中国神经精神疾病杂志, 36(5), 264-267.
张江华, 肖晶, 朱雪玲, 王湘, 姚树桥(2011). 首发抑郁症患者大脑灰质密度基于体素的形态测量学分析. 中南大学学报 (医学版), 36(4), 307-311.
Andrews-Hanna, J. R. (2012). The Brain’s De-fault Network and Its Adaptive Role in Internal Mentation. The Neuroscientist, 18, 251-270. https://doi.org/10.1177/1073858411403316
Binnewijzend, M. A., Schoonheim, M. M., Sanz-Arigita, E., Wink, A. M., van der Flier, W. M., Tolboom, N. et al. (2012). Resting-State fMRI Changes in Alzheimer’s Disease and Mild Cognitive Impairment. Neurobiology of Aging, 33, 2018- 2028. https://doi.org/10.1016/j.neurobiolaging.2011.07.003
Bishop, S. J. (2007). Neurocognitive Mechanisms of Anxiety: An Integrative Account. Trends in Cognitive Sciences, 11, 307-316. https://doi.org/10.1016/j.tics.2007.05.008
Bluhm, R., Williamson, P., Lanius, R., Théberge, J., Densmore, M., Bartha, R. et al. (2009). Resting State Default-Mode Network Connectivity in Early Depression Using a Seed Region-of-Interest Analysis: Decreased Connectivity with Caudate Nucleus. Psychiatry and Clinical Neurosciences, 63, 754-761. https://doi.org/10.1111/j.1440-1819.2009.02030.x
Briceño, E. M., Rapport, L. J., Kassel, M. T., Bieliauskas, L. A., Zubieta, J.-K., Weisenbach, S. L., & Langenecker, S. A. (2015). Age and Gender Modulate the Neural Circuitry Supporting Facial Emotion Processing in Adults with Major Depressive Disorder. The American Journal of Geriatric Psychiatry, 23, 304-313. https://doi.org/10.1016/j.jagp.2014.05.007
Britton, W. B., Shahar, B., Szepsenwol, O., & Jacobs, W. J. (2012). Mindfulness-Based Cognitive Therapy Improves Emotional Reactivity to Social Stress: Results from a Randomized Controlled Trial. Behavior Therapy, 43, 365-380. https://doi.org/10.1016/j.beth.2011.08.006
Burschka, J. M., Keune, P. M., Hofstadt-van Oy, U., Oschmann, P., & Kuhn, P. (2014). Mindfulness-Based Interventions in Multiple Sclerosis: Beneficial Effects of Tai Chi on Balance, Coordination, Fatigue and Depression. BMC Neurology, 14, 1. https://doi.org/10.1186/s12883-014-0165-4
Caetano, S. C., Kaur, S., Brambilla, P., Nicoletti, M., Hatch, J. P., Sassi, R. B. et al. (2006). Smaller Cingulate Volumes in Unipolar Depressed Patients. Biological Psychiatry, 59, 702-706. https://doi.org/10.1016/j.biopsych.2005.10.011
Chen, S.-Y., Jordan, C., & Thompson, S. (2006). The Effect of Cog-nitive Behavioral Therapy (CBT) on Depression: The Role of Problem-Solving Appraisal. Research on Social Work Practice, 16, 500-510. https://doi.org/10.1177/1049731506287302
Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, Plas-ticity, Context, and Regulation: Perspectives from Affective Neuroscience. Psychological Bulletin, 126, 890-909. https://doi.org/10.1037/0033-2909.126.6.890
Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from Affective Neuroscience. Annual Review of Psychology, 53, 545-574. https://doi.org/10.1146/annurev.psych.53.100901.135148
Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Con-tributions of Anterior Cingulate Cortex to Behaviour. Brain, 118, 279-306. https://doi.org/10.1093/brain/118.1.279
Eisendrath, S. J., Gillung, E., Delucchi, K., Mathalon, D. H., Yang, T. T., Satre, D. D. et al. (2015). A Preliminary Study: Efficacy of Mindfulness-Based Cognitive Therapy versus Sertraline as First-Line Treatments for Major Depressive Disorder. Mindfulness, 6, 475-482. https://doi.org/10.1007/s12671-014-0280-8
Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B., Chen, K., & Buxton, R. B. (2009). Resting-State BOLD Networks versus Task-Associated Functional MRI for Distinguishing Alzhei-mer’s Disease Risk Groups. NeuroImage, 47, 1678-1690. https://doi.org/10.1016/j.neuroimage.2009.06.021
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The Salience Network Is Responsible for Switching between the Default Mode Network and the Central Executive Network: Replication from DCM. NeuroImage, 99, 180-190. https://doi.org/10.1016/j.neuroimage.2014.05.052
Grieve, S. M., Korgaonkar, M. S., Koslow, S. H., Gordon, E., & Williams, L. M. (2013). Widespread Reductions in Gray Matter Volume in Depression. NeuroImage: Clinical, 3, 332-339. https://doi.org/10.1016/j.nicl.2013.08.016
He, X., Qin, W., Liu, Y., Zhang, X., Duan, Y., Song, J. et al. (2014). Abnormal Salience Network in Normal Aging and in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Human Brain Mapping, 35, 3446-3464. https://doi.org/10.1002/hbm.22414
Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M. et al. (2014). Damage to the Salience Network and Interactions with the Default Mode Network. The Journal of Neuroscience, 34, 10798-10807. https://doi.org/10.1523/JNEUROSCI.0518-14.2014
Joshi, S. H., Espinoza, R. T., Pirnia, T., Shi, J., Wang, Y., Ayers, B. et al. (2016). Structural Plasticity of the Hippocampus and Amygdala Induced by Electroconvulsive Therapy in Major Depression. Biological Psychiatry, 79, 282-292. https://doi.org/10.1016/j.biopsych.2015.02.029
Keller, M. B. (2003). Past, Present, and Future Directions for Defining Optimal Treatment Outcome in Depression: Remission and Beyond. JAMA, 289, 3152-3160. https://doi.org/10.1001/jama.289.23.3152
Kennedy, N., Abbott, R., & Paykel, E. (2003). Remission and Recurrence of Depression in the Maintenance Era: Long-Term Outcome in a Cambridge Cohort. Psychological Medicine, 33, 827-838. https://doi.org/10.1017/S003329170300744X
Lei, X., Luo, C., & Yao, D. (2011). Imaging Epileptic Networks Using Spatial-Temporal EEG-fMRI Fusion. International Journal of Bioelectromagnetism, 13, 249-254.
Lei, X., Qiu, C., Xu, P., & Yao, D. (2010). A Parallel Framework for Simultaneous EEG/fMRI Analysis: Methodology and Simulation. NeuroImage, 52, 1123-1134. https://doi.org/10.1016/j.neuroimage.2010.01.024
Ma, S. H., & Teasdale, J. D. (2004). Mindfulness-Based Cognitive Therapy for Depression: Replication and Exploration of Differential Relapse Prevention Effects. Journal of Consulting and Clinical Psychology, 72, 31-40. https://doi.org/10.1037/0022-006X.72.1.31
Murphy, C. F., Gunning-Dixon, F. M., Hoptman, M. J., Lim, K. O., Ar-dekani, B., Shields, J. K. et al. (2007). White-Matter Integrity Predicts Stroop Performance in Patients with Geriatric De-pression. Biological Psychiatry, 61, 1007-1010. https://doi.org/10.1016/j.biopsych.2006.07.028
O’Doherty, V., Carr, A., McGrann, A., O’Neill, J. O., Dinan, S., Graham, I., & Maher, V. (2015). A Controlled Evaluation of Mindfulness-Based Cognitive Therapy for Patients with Co-ronary Heart Disease and Depression. Mindfulness, 6, 405-416. https://doi.org/10.1007/s12671-013-0272-0
Pérez-Mata, N., López-Martín, S., Albert, J., Carretié, L., & Tapia, M. (2012). Recognition of Emotional Pictures: Behavioural and Electrophysiological Measures. Journal of Cognitive Psychology, 24, 256-277. https://doi.org/10.1080/20445911.2011.613819
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gus-nard, D. A., & Shulman, G. L. (2001). A Default Mode of Brain Function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676-682. https://doi.org/10.1073/pnas.98.2.676
Rajkowska, G., Miguel-Hidalgo, J. J., Wei, J., Dilley, G., Pittman, S. D., Meltzer, H. Y. et al. (1999). Morphometric Evidence for Neuronal and Glial Prefrontal Cell Pathology in Major Depression. Biological Psychiatry, 45, 1085-1098. https://doi.org/10.1016/S0006-3223(99)00041-4
Salvadore, G., Nugent, A. C., Lemaitre, H., Luckenbaugh, D. A., Tinsley, R., Cannon, D. M. et al. (2011). Prefrontal Cortical Abnormalities in Currently Depressed versus Currently Re-mitted Patients with Major Depressive Disorder. NeuroImage, 54, 2643-2651. https://doi.org/10.1016/j.neuroimage.2010.11.011
Sarmiento-Bolaños, M. J., & Gómez-Acosta, A. (2013). Mindful-ness: A Proposed of Application in Neuropsychological Rehabilitation. Avances en Psicologia Latinoamericana, 31, 140-155.
Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., & Vannier, M. W. (1996). Hippocampal Atrophy in Recurrent Major Depression. Proceedings of the National Academy of Sciences of the United States of America, 93, 3908-3913. https://doi.org/10.1073/pnas.93.9.3908
Spreng, R. N., & Grady, C. L. (2010). Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to the Default Mode Network. Journal of Cognitive Neuroscience, 22, 1112-1123. https://doi.org/10.1162/jocn.2009.21282
Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The Neuroscience of Mindfulness Meditation. Nature Reviews Neuroscience, 16, 213-225. https://doi.org/10.1038/nrn3916
Teasdale, J. D., Moore, R. G., Hayhurst, H., Pope, M., Williams, S., & Segal, Z. V. (2002). Metacognitive Awareness and Prevention of Relapse in Depression: Empirical Evidence. Journal of Consulting and Clinical Psychology, 70, 275-287. https://doi.org/10.1037/0022-006X.70.2.275
Teasdale, J. D., Segal, Z. V., Williams, J. M. G., Ridgeway, V. A., Soulsby, J. M., & Lau, M. A. (2000). Prevention of Relapse/Recurrence in Major Depression by Mindfulness-Based Cog-nitive Therapy. Journal of Consulting and Clinical Psychology, 68, 615-623. https://doi.org/10.1037/0022-006X.68.4.615
Thayer, J. F., & Lane, R. D. (2000). A Model of Neurovisceral Integra-tion in Emotion Regulation and Dysregulation. Journal of Affective Disorders, 61, 201-216. https://doi.org/10.1016/S0165-0327(00)00338-4
van Tol, M.-J., van der Wee, N. J., van den Heuvel, O. A., Nielen, M. M., Demenescu, L. R., Aleman, A. et al. (2010). Regional Brain Volume in Depression and Anxiety Disorders. Archives of General Psychiatry, 67, 1002-1011. https://doi.org/10.1001/archgenpsychiatry.2010.121
van Tol, M.-J., Veer, I. M., van der Wee, N. J., Aleman, A., van Buchem, M. A., Rombouts, S. A. et al. (2013). Whole-Brain Functional Connectivity during Emotional Word Classification in Medication-Free Major Depressive Disorder: Abnormal Salience Circuitry and Relations to Positive Emotionality. NeuroImage: Clinical, 2, 790-796. https://doi.org/10.1016/j.nicl.2013.05.012
Wei, M., Qin, J., Yan, R., Bi, K., Liu, C., Yao, Z., & Lu, Q. (2015). Association of Resting-State Network Dysfunction with Their Dynamics of Inter-Network Interactions in Depression. Journal of Affective Disorders, 174, 527-534. https://doi.org/10.1016/j.jad.2014.12.020