AP Advances in Psychology 2160-7273 Scientific Research Publishing 10.12677/AP.2016.611147 AP-19013 AP20161100000_16260162.pdf 人文社科 合作期刊 抑郁症发病的脑机制研究:来自大脑中线脑区的证据 The Brain Mechanism of Depression: Evidence from the Brain Midline Areas 1 * 吉成 1 2 雨霞 1 2 亚运 1 2 1 2 1 2 西南大学心理学部,认知与人格教育部重点实验室,重庆 null * E-mail: 508244257@qq.com(刘永) ; 11 11 2016 06 11 1166 1173 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

抑郁症是一种高患病率和高致残率的精神疾病,以情绪低落为主要特征,经临床治疗后复发率高。研究证明抑郁症患者存在广泛的脑网络的异常。本文通过梳理了大量的国内外相关文献,发现抑郁症患者的发病脑机制集中在大脑的中线脑区。由于抑郁症患者,尤其是重度抑郁症患者的脑功能和结构都发生了病变,因此治疗抑郁症不仅要消除症状,更要关注的是患者的脑功能以及脑结构的恢复。本文从这个角度对抑郁症的未来研究及治疗进行了展望。 Depression is a mental illness with high prevalence and morbidity, low mood is the main charac-teristics, and the recurrence rate is high after clinical treatment. A large number of studies have found the abnormalities of brain networks among patients with depression. From consulting a lot of studies, we found that the lesion brain mechanism of depression distributed in brain midline areas. Because of the lesion of brain function and brain structure of patients with depression, especially major depressive disorder, so depression treatments do not stop with the symptoms relieving; the key step is the improvement of brain function and brain structure. From the view, we discussed the study and therapy of depression in the future.

抑郁症,脑机制,中线脑区, Depression Brain Mechanism Brain Midline Areas
抑郁症发病的脑机制研究:来自大脑中线脑区的证据<sup> </sup>

刘永*,裘吉成,何雨霞,孟亚运,袁宏#,雷旭

西南大学心理学部,认知与人格教育部重点实验室,重庆

收稿日期:2016年11月2日;录用日期:2016年11月20日;发布日期:2016年11月23日

摘 要

抑郁症是一种高患病率和高致残率的精神疾病,以情绪低落为主要特征,经临床治疗后复发率高。研究证明抑郁症患者存在广泛的脑网络的异常。本文通过梳理了大量的国内外相关文献,发现抑郁症患者的发病脑机制集中在大脑的中线脑区。由于抑郁症患者,尤其是重度抑郁症患者的脑功能和结构都发生了病变,因此治疗抑郁症不仅要消除症状,更要关注的是患者的脑功能以及脑结构的恢复。本文从这个角度对抑郁症的未来研究及治疗进行了展望。

关键词 :抑郁症,脑机制,中线脑区

1. 引言

抑郁症通常指的是情绪障碍,是一种以心境低落为主要特征的综合征。其临床表现主要为情绪、兴趣、认知、思维、意志活动的低下以及生理功能的紊乱,严重时甚至发生木僵,或出现幻觉、妄想等精神病性症状。部分患者出现自杀,或伴发明显的焦虑或激惹,甚至发生攻击行为,严重者甚至会有自杀倾向。抑郁症严重困扰患者的生活和工作,给家庭和社会带来沉重的负担。抑郁症患者中有15%的人会死于自杀,而在所有自杀的人当中,70%的患有抑郁症(Pérez-Mata, López-Martín, Albert, Carretié, & Tapia, 2012)。治疗重度抑郁症的一个巨大挑战就是治疗后对再次复发的预防(Keller, 2003; Kennedy, Abbott, & Paykel, 2003)。在美国,抑郁症常常被诊断为精神病,且其复发率高达80%到90% (Chen, Jordan, & Thompson, 2006)。与从来没有患抑郁症的人相比,抑郁患者的认知更易受损(Teasdale et al., 2002)。

2. 抑郁症患者脑区的异常

抑郁症患者的病变脑区涉及到多个脑网络,有很多脑区均发生功能或结构的异常,病变脑区大多集中到大脑中线位置。这些脑区包含前额皮层(prefrontal cortex, PFC)、前扣带回(anterior cingulate cortex, ACC)、后扣带回/楔前叶(posterior cingutate cortex/ precuneus cortex, PCC/PCu)等,还有比较深层的纹状体(Striatum)、杏仁核(Amygdala)、海马(hippocampal formation, HF)和丘脑(Thalamus)等脑区。这些中线脑区横跨了多个脑网络,包含默认网络(Default Mode Network, DMN)、凸显网络(Salience Network, SN)、腹内侧前额网络(ventromedial Prefrontal Network,vmPFN)和额顶控制网络(fronto-parietal control network, FPC)等,这些网络涉及到情绪调节、自我参照加工、记忆、内部心理活动、认知控制以及认知过程中注意资源的分配等重要的作用。

2.1. 抑郁症患者脑区功能的异常

前额皮层是信息加工的执行控制中心,负责参与执行功能认知过程的加工,并与情绪及冲突行为的控制、人格发展有关(Davidson, Jackson, & Kalin, 2000)。前额叶的机能具有不对称性:左侧前额叶激活与积极情感有关,右侧前额叶激活与消极情感有关。Davidson等人(2002)发现不论是当前患抑郁症的,还是曾经患过抑郁的人,其左侧的前额叶激活比正常的控制组更低(Davidson, Pizzagalli, Nitschke, & Putnam, 2002)。由于前额叶与杏仁核相互连接,左侧前额叶受损导致积极情感体验缺失,杏仁核的调节功能随之下降,同时杏仁核活动时程延长,抑郁症患者就会有较多的消极情绪(Davidson, Pizzagalli, Nitschke, & Putnam, 2002) 。杏仁核–前额叶通路与情绪调节有重要的关系(Bishop, 2007),一旦前额叶或杏仁核受损,该通路的调节功能就可能出现障碍。

内侧前额叶皮层是DMN的核心脑区,DMN是任务负网络(task-negative network, TNN),静息状态下脑区呈现激活状态,在参与需要注意或目标导向的任务时这些脑区呈现负激活状态,其负激活的程度会随任务的认知难度增高而增大(Raichle et al., 2001)。DMN的核心脑区包括内侧前额叶(medial prefrontal cortex, MPFC)、后扣带回/楔前叶(posterior cingutate cortex/precuneus cortex, PCC/PCu)、海马、前扣带回腹侧(ventral anterior cingulate cortex, vACC)、角回(angular gyrus, AG)、外侧颞叶等(Binnewijzend et al., 2012)。DMN被认为是负责内部指向和自我参照的认知加工,如思维漫游、自传体记忆检索、想象未来以及心理理论等(Andrews-Hanna, 2012; Spreng & Grady, 2010)。研究显示抑郁症患者的DMN存在广泛异常(Wei et al., 2015),其左侧前额叶受损更为严重,导致情绪调节能力下降,所以抑郁症患者往往表现较多的消极情绪体验,伴随自己无法控制的自动思维。

抑郁症患者也常常伴有扣带回的功能病变。前扣带回(ACC)是对内脏、注意和情感信息进行整合的脑区,特别是自我调节和适应性,而且ACC在选择性注意、情感和哺乳类动物特定的社会行为中也有重要的作用(Devinsky, Morrell, & Vogt, 1995; Thayer & Lane, 2000)。后扣带回则与监控感觉、立体定位和记忆有关。抑郁症患者前扣带回功能的受损,影响多巴胺(dopamin DA)的释放,抑郁症患者的脑认知改组功能的调节就受到损害,所以抑郁症患者也会表现思维迟缓和认知功能的损害。

2.2. 抑郁症患者各脑区功能连接的异常

van Tol等人(2013)对25名重度抑郁症(Major Depressive Disorder MDD)和25名正常被试进行研究,研究显示MDD的内侧前额皮层(mPFC),腹外侧前额皮层(VLPFC)以及腹侧纹状体与前额盖凸显网络(fronto-opercular salience network, FOSN)的功能连接降低(van Tol et al., 2013)。Bluhm等人(2009)对早期抑郁症患者的DMN进行研究,以楔前叶/后扣带回(Pcu/PCC)为种子点进行功能连接分析,结果显示早期抑郁病人的楔前叶/后扣带回与双侧尾状核的功能连接降低,尾状核与动机和奖赏行为有关,DMN与尾状核的功能连接降低可能是MDD的早期表现(Bluhm et al., 2009)。凸显网络(SN)由额岛皮层(frontoinsular cortex, FIC)、背侧前扣带回(dorsalACC, dACC)和背外侧前额皮层(DLPFC)等脑区域组成,主要负责辨别内外环境刺激完成注意捕获(Jilka et al., 2014),SN调节执行网络(executive network, EN)和DMN之间的关系,根据外部任务需求完成EN和DMN之间的切换(Goulden et al., 2014; He et al., 2014)。MDD患者mPFC、VLPFC及腹侧纹状体与FOSN功能连接的降低,暗示抑郁症患者SN的调节作用存在异常。海马是与记忆和学习相关的重要的脑结构。抑郁症患者海马功能受损存在严重的偏侧化现象,常常是左侧海马功能受损,左海马的局部一致性(regional homogeneity, ReHo)升高(王丽et al., 2010)。

2.3. 抑郁症患者脑区结构的异常

抑郁症患者不仅存在脑功能的异常,而且脑结构也有一定的改变。早在1999年,Rajkowska等人的尸检报告就显示抑郁症病人前额叶皮质存在神经元体积的丢失和神经元胶质细胞数量的减少(Rajkowska et al., 1999)。

van Tol等人采用基于体素优化形态学(Optimization voxel-based morphometry, OVBM)分析显示抑郁症病人额下回及扣带回脑体积有所减小(van Tol et al., 2010),右侧额中回、右侧额上回、左侧额下回及左侧额上回灰质密度也有所降低(张江华,肖晶,朱雪玲,王湘,姚树桥,2011),而且抑郁症患者灰质减少的区域与抑郁症患者功能网络异常的区域像是一致的(Grieve, Korgaonkar, Koslow, Gordon, & Williams, 2013)。

Salvadore等人采用基于体素的形态学分析(voxel-based morphometry, VBM)对发作期抑郁症、缓解期抑郁症和健康控制组进行研究,研究发现与健康对照组相比,发作期患者背前外侧前额叶皮层(dorsal anterolateral prefrontal cortex, DALPFC),背内侧前额叶皮层(dorsomedial prefrontal cortex, DMPFC),腹外侧前额叶皮层(ventrolateral prefrontal cortex, VLPFC)灰质显著减少,与缓解期的患者相比,发作期的患者DALPFC,VLPFC,ACC,楔前叶和顶下小叶灰质显著减少(Salvadore et al., 2011)。抑郁症患者在症状改善的同时,脑功能和脑结构也有所好转,DALPFC和VLPFC灰质增加说明抑郁症患者正在康复中。Caetano等人研究发现,与正常健康人相比,发作期的抑郁症患者双侧前扣带回(ACC)和后扣带回(PCC)的体积显著减小,缓解期患者左侧ACC显著减小(Caetano et al., 2006)。所以左侧ACC可能是抑郁症患者受损较为严重的脑区。

抑郁症病人的海马结构的灰质密度也会降低或体积减小(Joshi et al., 2016),早在1996年Sheline就报告了抑郁症患者海马体积的减小,他们对处于缓解期的10名抑郁症患者进行磁共振(MRI)的扫描,结果显示左侧海马体积减少15%,右侧海马体积减少12% (Sheline, Wang, Gado, Csernansky, & Vannier, 1996),左右两侧海马体积的减少可能与抑郁症的严重程度以及抑郁症的病程有关,可能是首先是左侧海马受损,随着病情的加重,右侧海马也开始出现病变,病情越严重的抑郁症患者的海马萎缩或海马灰质减少的越多。Murphy等人(2007)研究发现抑郁症患者额叶、颞叶及顶叶某些区域脑白质纤维完整性的受损(Murphy et al., 2007)。

综上研究发现,抑郁症患者的病变脑区主要在大脑的中线位置,图1简描绘了抑郁症患者的主要病变脑区:

由前述可知抑郁症患者,尤其是MDD患者的脑结构和脑功能都发生了病变,因此治疗抑郁症不仅要消除症状,更要关注的是患者脑功能和脑结构的恢复。目前临床上抑郁症治愈的标准仍是症状学上的, 美国精神医学界对抑郁症临床治愈定义为“没有临床症状(不再符合抑郁症的任何诊断标准,且只有极少数症状或完全没有症状)”,其操作性定义为汉密顿抑郁量表(HAMD)评分 ≤ 7分,但当HAMD ≤ 7分时,虽然大部分的患者症状上虽不再达到抑郁症诊断标准,但仍有较多的阈下症状,心理社会功能也没有完全恢复,而且患者的脑功能也有一定程度的紊乱,这可一定程度上解释为什么临床上抑郁症的复发率较高。

近年来研究发现,正念冥想训练后,参与者的脑功能和脑结构都有一定程度的变化,涉及到的脑区主要有前扣带回(ACC)、后扣带回/楔前叶(PCC/PCu)、内侧前额皮层(mPFC)、纹状体(Striatum)、杏仁核(Amygdala)和脑岛(Insula)等(Tang, Hölzel, & Posner, 2015)。这些脑区与前述抑郁症的病变脑区有很大的一

图1. 抑郁症患者主要病变脑区

致性,给抑郁症病变脑区的治疗和康复提供了理论依据。

3. 正念冥想在抑郁症治疗中的作用

目前大量的临床研究已把正念冥想运用到抑郁症的研究和治疗中。正念冥想(Mindfulness Meditation, MM)是一组以正念技术为核心的冥想练习方法,正念冥想的主要疗法有正念减压疗法(Mindfulness-based Stress Reduction, MBSR)和正念认知疗法(Mindfulness-based Cognitive Therapy, MBCT),辩证行为疗法(Dialectical Behavior Therapy, DBT)和承诺接受疗法(Acceptance and Commitment Therapy, ACT)。正念认知疗法主要用来干预和治疗抑郁症,特别是预防抑郁症的复发。研究表明正念认知疗法对抑郁症的治疗及抑郁症复发的干预有显著的疗效(Britton, Shahar, Szepsenwol, & Jacobs, 2012; Burschka, Keune, Hofstadt-van Oy, Oschmann, & Kuhn, 2014),甚至其疗效与药物(舍曲林)几乎是相同的(Eisendrath et al., 2015)。Teasdale (2000)等人和Ma (2004)等人的研究均证实了正念认知疗法可以帮助曾经复发过三次及三次以上的抑郁症患者,显著降低他们抑郁症的再次复发率(Ma & Teasdale, 2004; Teasdale et al., 2000)。正念认知训练在预防和治疗抑郁症的同时,还可以提高患者的主观效能感(Eisendrath et al., 2015; Sarmiento-Bolaños & Gómez-Acosta, 2013)。正念认知疗法还可以改善其他疾病引起的抑郁症状,对冠心病(Coronary Heart Disease, CHD)伴随抑郁症状的患者进行正念认知疗法的干预,正念认知疗法组患者的临床症状有显著的改善(O’Doherty et al., 2015)。

综上所述,抑郁症患者的脑区功能和结构都有一定程度的损伤,目前的临床治疗主要以抑郁症状的消除为指标,其心理和社会功能还没有完成康复,导致抑郁症的复发率较高。而正念冥想融合心理学,医学和传统禅修等的知识,被广泛用于预防抑郁症的复发,帮助抑郁症患者的心理和社会功能的恢复。本文从大脑中线脑区的角度,阐述了抑郁症发病的脑机制,正念冥想的作用机制也集中与大脑中线位置。所以正念冥想有望成为除药物治疗外,最佳的心理治疗方法,可以有效弥补药物治疗的不足。

4. 讨论和展望

抑郁症是由多种因素导致的心境障碍性疾病,研究表明抑郁症患者多脑区、多网络功能和结构的异常,通过文献梳理发现,抑郁症的主要病变脑区在大脑的中线位置。目前的研究还有一定的局限性,现对未来研究展望如下:

首先,目前对抑郁症发病脑机制的研究大多采用单一模态,常用静息态功能磁共振成像(resting-state functional magnetic resonance imaging, rs-fMRI)技术,是一种非侵入性可视化成像方法,不需要刺激呈现和患者反应(Fleisher et al., 2009)。未来的研究技术上可以采用多模态研究,如EEG-fMRI的同步扫描研究,同步EEG-fMRI 兼有EEG 的高时间和fMRI的高空间分辨率,在实际操作中结合数据融合技术(Lei, Luo, & Yao, 2011; Lei, Qiu, Xu, & Yao, 2010)。多模态研究可以弥补单个模态的不足,可以从多个层面揭示抑郁症发病的机制,为抑郁症的治疗提供更加可靠的证据。

其次,重度抑郁症患者对情绪面孔的加工存在年龄和性别的差异(Briceño et al., 2015) ,MDD的年轻女性患者和老年男性MDD,与他们相同性别的健康被试相比,他们在前额、边缘系统和基底神经节等上有超激活(hyperactivation)。但是老年女性MDD和年轻男性MDD,与他们相同的性别的健康被试相比,他们在前额、边缘系统和基底神经节等脑区上呈现去激活(hypoactivation)。提示MDD在情绪加工回路上存在性别和年龄差异,在老年MDD中性别差异机制可能是认知–情绪障碍的基础。未来在抑郁症的研究和治疗中,应考虑个体的性别和年龄差异。

最后,抑郁症患者存在广泛的脑网络或脑区的异常,随着抑郁症病情的变化,患者的脑区病变严重程度仍不清楚。Salvadore等人研究发作期的抑郁症患者前额叶灰质显著减少,与缓解期的患者相比发作期的患者DALPFC,VLPFC灰质显著减少(Salvadore et al., 2011)。前额叶皮层是抑郁症病变的重要脑区,除了MPFC、ACC、PCC等较浅脑区的病变(Davidson, Pizzagalli, Nitschke, & Putnam, 2002; Salvadore et al., 2011; Caetano et al., 2006),抑郁症患者还存在纹状体、杏仁核、海马等比较深层脑区的病变(Sheline, Wang, Gado, Csernansky, & Vannier, 1996; Davidson, Pizzagalli, Nitschke, & Putnam, 2002; 王丽et al., 2010)。未来的研究中可以依据病变脑区的不同将抑郁症患者进一步进行分类,探讨抑郁症患者的症状与脑区病变的相关,研究随着抑郁症病情的逐渐加重,患者的脑机制是否是从比较浅层的结构逐渐较深结构发生病变。

5. 结语

抑郁症严重威胁人们身心健康,给社会和家庭带来严重的压力,对其认识、诊断和治疗上的突破对于人类的健康和发展非常重要。对抑郁症的治疗不要止于症状的消除,结合心理治疗,注重患者的脑功能和心理功能的恢复,降低复发率,真正治愈抑郁症。

文章引用

刘 永,裘吉成,何雨霞,孟亚运,袁 宏,雷 旭. 抑郁症发病的脑机制研究:来自大脑中线脑区的证据 The Brain Mechanism of Depression: Evidence from the Brain Midline Areas[J]. 心理学进展, 2016, 06(11): 1166-1173. http://dx.doi.org/10.12677/AP.2016.611147

参考文献 (References) References 王丽, 姚志全, 卢青, 刘海燕, 陈景旭, 卞清涛(2010). 重度抑郁症症状缓解前后海马局部一致性研究. 中国神经精神疾病杂志, 36(5), 264-267. 张江华, 肖晶, 朱雪玲, 王湘, 姚树桥(2011). 首发抑郁症患者大脑灰质密度基于体素的形态测量学分析. 中南大学学报 (医学版), 36(4), 307-311. Andrews-Hanna, J. R. (2012). The Brain’s De-fault Network and Its Adaptive Role in Internal Mentation. The Neuroscientist, 18, 251-270. https://doi.org/10.1177/1073858411403316 Binnewijzend, M. A., Schoonheim, M. M., Sanz-Arigita, E., Wink, A. M., van der Flier, W. M., Tolboom, N. et al. (2012). Resting-State fMRI Changes in Alzheimer’s Disease and Mild Cognitive Impairment. Neurobiology of Aging, 33, 2018- 2028. https://doi.org/10.1016/j.neurobiolaging.2011.07.003 Bishop, S. J. (2007). Neurocognitive Mechanisms of Anxiety: An Integrative Account. Trends in Cognitive Sciences, 11, 307-316. https://doi.org/10.1016/j.tics.2007.05.008 Bluhm, R., Williamson, P., Lanius, R., Théberge, J., Densmore, M., Bartha, R. et al. (2009). Resting State Default-Mode Network Connectivity in Early Depression Using a Seed Region-of-Interest Analysis: Decreased Connectivity with Caudate Nucleus. Psychiatry and Clinical Neurosciences, 63, 754-761. https://doi.org/10.1111/j.1440-1819.2009.02030.x Briceño, E. M., Rapport, L. J., Kassel, M. T., Bieliauskas, L. A., Zubieta, J.-K., Weisenbach, S. L., & Langenecker, S. A. (2015). Age and Gender Modulate the Neural Circuitry Supporting Facial Emotion Processing in Adults with Major Depressive Disorder. The American Journal of Geriatric Psychiatry, 23, 304-313. https://doi.org/10.1016/j.jagp.2014.05.007 Britton, W. B., Shahar, B., Szepsenwol, O., & Jacobs, W. J. (2012). Mindfulness-Based Cognitive Therapy Improves Emotional Reactivity to Social Stress: Results from a Randomized Controlled Trial. Behavior Therapy, 43, 365-380. https://doi.org/10.1016/j.beth.2011.08.006 Burschka, J. M., Keune, P. M., Hofstadt-van Oy, U., Oschmann, P., & Kuhn, P. (2014). Mindfulness-Based Interventions in Multiple Sclerosis: Beneficial Effects of Tai Chi on Balance, Coordination, Fatigue and Depression. BMC Neurology, 14, 1. https://doi.org/10.1186/s12883-014-0165-4 Caetano, S. C., Kaur, S., Brambilla, P., Nicoletti, M., Hatch, J. P., Sassi, R. B. et al. (2006). Smaller Cingulate Volumes in Unipolar Depressed Patients. Biological Psychiatry, 59, 702-706. https://doi.org/10.1016/j.biopsych.2005.10.011 Chen, S.-Y., Jordan, C., & Thompson, S. (2006). The Effect of Cog-nitive Behavioral Therapy (CBT) on Depression: The Role of Problem-Solving Appraisal. Research on Social Work Practice, 16, 500-510. https://doi.org/10.1177/1049731506287302 Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, Plas-ticity, Context, and Regulation: Perspectives from Affective Neuroscience. Psychological Bulletin, 126, 890-909. https://doi.org/10.1037/0033-2909.126.6.890 Davidson, R. J., Pizzagalli, D., Nitschke, J. B., & Putnam, K. (2002). Depression: Perspectives from Affective Neuroscience. Annual Review of Psychology, 53, 545-574. https://doi.org/10.1146/annurev.psych.53.100901.135148 Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Con-tributions of Anterior Cingulate Cortex to Behaviour. Brain, 118, 279-306. https://doi.org/10.1093/brain/118.1.279 Eisendrath, S. J., Gillung, E., Delucchi, K., Mathalon, D. H., Yang, T. T., Satre, D. D. et al. (2015). A Preliminary Study: Efficacy of Mindfulness-Based Cognitive Therapy versus Sertraline as First-Line Treatments for Major Depressive Disorder. Mindfulness, 6, 475-482. https://doi.org/10.1007/s12671-014-0280-8 Fleisher, A. S., Sherzai, A., Taylor, C., Langbaum, J. B., Chen, K., & Buxton, R. B. (2009). Resting-State BOLD Networks versus Task-Associated Functional MRI for Distinguishing Alzhei-mer’s Disease Risk Groups. NeuroImage, 47, 1678-1690. https://doi.org/10.1016/j.neuroimage.2009.06.021 Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The Salience Network Is Responsible for Switching between the Default Mode Network and the Central Executive Network: Replication from DCM. NeuroImage, 99, 180-190. https://doi.org/10.1016/j.neuroimage.2014.05.052 Grieve, S. M., Korgaonkar, M. S., Koslow, S. H., Gordon, E., & Williams, L. M. (2013). Widespread Reductions in Gray Matter Volume in Depression. NeuroImage: Clinical, 3, 332-339. https://doi.org/10.1016/j.nicl.2013.08.016 He, X., Qin, W., Liu, Y., Zhang, X., Duan, Y., Song, J. et al. (2014). Abnormal Salience Network in Normal Aging and in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Human Brain Mapping, 35, 3446-3464. https://doi.org/10.1002/hbm.22414 Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M. et al. (2014). Damage to the Salience Network and Interactions with the Default Mode Network. The Journal of Neuroscience, 34, 10798-10807. https://doi.org/10.1523/JNEUROSCI.0518-14.2014 Joshi, S. H., Espinoza, R. T., Pirnia, T., Shi, J., Wang, Y., Ayers, B. et al. (2016). Structural Plasticity of the Hippocampus and Amygdala Induced by Electroconvulsive Therapy in Major Depression. Biological Psychiatry, 79, 282-292. https://doi.org/10.1016/j.biopsych.2015.02.029 Keller, M. B. (2003). Past, Present, and Future Directions for Defining Optimal Treatment Outcome in Depression: Remission and Beyond. JAMA, 289, 3152-3160. https://doi.org/10.1001/jama.289.23.3152 Kennedy, N., Abbott, R., & Paykel, E. (2003). Remission and Recurrence of Depression in the Maintenance Era: Long-Term Outcome in a Cambridge Cohort. Psychological Medicine, 33, 827-838. https://doi.org/10.1017/S003329170300744X Lei, X., Luo, C., & Yao, D. (2011). Imaging Epileptic Networks Using Spatial-Temporal EEG-fMRI Fusion. International Journal of Bioelectromagnetism, 13, 249-254. Lei, X., Qiu, C., Xu, P., & Yao, D. (2010). A Parallel Framework for Simultaneous EEG/fMRI Analysis: Methodology and Simulation. NeuroImage, 52, 1123-1134. https://doi.org/10.1016/j.neuroimage.2010.01.024 Ma, S. H., & Teasdale, J. D. (2004). Mindfulness-Based Cognitive Therapy for Depression: Replication and Exploration of Differential Relapse Prevention Effects. Journal of Consulting and Clinical Psychology, 72, 31-40. https://doi.org/10.1037/0022-006X.72.1.31 Murphy, C. F., Gunning-Dixon, F. M., Hoptman, M. J., Lim, K. O., Ar-dekani, B., Shields, J. K. et al. (2007). White-Matter Integrity Predicts Stroop Performance in Patients with Geriatric De-pression. Biological Psychiatry, 61, 1007-1010. https://doi.org/10.1016/j.biopsych.2006.07.028 O’Doherty, V., Carr, A., McGrann, A., O’Neill, J. O., Dinan, S., Graham, I., & Maher, V. (2015). A Controlled Evaluation of Mindfulness-Based Cognitive Therapy for Patients with Co-ronary Heart Disease and Depression. Mindfulness, 6, 405-416. https://doi.org/10.1007/s12671-013-0272-0 Pérez-Mata, N., López-Martín, S., Albert, J., Carretié, L., & Tapia, M. (2012). Recognition of Emotional Pictures: Behavioural and Electrophysiological Measures. Journal of Cognitive Psychology, 24, 256-277. https://doi.org/10.1080/20445911.2011.613819 Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gus-nard, D. A., & Shulman, G. L. (2001). A Default Mode of Brain Function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676-682. https://doi.org/10.1073/pnas.98.2.676 Rajkowska, G., Miguel-Hidalgo, J. J., Wei, J., Dilley, G., Pittman, S. D., Meltzer, H. Y. et al. (1999). Morphometric Evidence for Neuronal and Glial Prefrontal Cell Pathology in Major Depression. Biological Psychiatry, 45, 1085-1098. https://doi.org/10.1016/S0006-3223(99)00041-4 Salvadore, G., Nugent, A. C., Lemaitre, H., Luckenbaugh, D. A., Tinsley, R., Cannon, D. M. et al. (2011). Prefrontal Cortical Abnormalities in Currently Depressed versus Currently Re-mitted Patients with Major Depressive Disorder. NeuroImage, 54, 2643-2651. https://doi.org/10.1016/j.neuroimage.2010.11.011 Sarmiento-Bolaños, M. J., & Gómez-Acosta, A. (2013). Mindful-ness: A Proposed of Application in Neuropsychological Rehabilitation. Avances en Psicologia Latinoamericana, 31, 140-155. Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., & Vannier, M. W. (1996). Hippocampal Atrophy in Recurrent Major Depression. Proceedings of the National Academy of Sciences of the United States of America, 93, 3908-3913. https://doi.org/10.1073/pnas.93.9.3908 Spreng, R. N., & Grady, C. L. (2010). Patterns of Brain Activity Supporting Autobiographical Memory, Prospection, and Theory of Mind, and Their Relationship to the Default Mode Network. Journal of Cognitive Neuroscience, 22, 1112-1123. https://doi.org/10.1162/jocn.2009.21282 Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The Neuroscience of Mindfulness Meditation. Nature Reviews Neuroscience, 16, 213-225. https://doi.org/10.1038/nrn3916 Teasdale, J. D., Moore, R. G., Hayhurst, H., Pope, M., Williams, S., & Segal, Z. V. (2002). Metacognitive Awareness and Prevention of Relapse in Depression: Empirical Evidence. Journal of Consulting and Clinical Psychology, 70, 275-287. https://doi.org/10.1037/0022-006X.70.2.275 Teasdale, J. D., Segal, Z. V., Williams, J. M. G., Ridgeway, V. A., Soulsby, J. M., & Lau, M. A. (2000). Prevention of Relapse/Recurrence in Major Depression by Mindfulness-Based Cog-nitive Therapy. Journal of Consulting and Clinical Psychology, 68, 615-623. https://doi.org/10.1037/0022-006X.68.4.615 Thayer, J. F., & Lane, R. D. (2000). A Model of Neurovisceral Integra-tion in Emotion Regulation and Dysregulation. Journal of Affective Disorders, 61, 201-216. https://doi.org/10.1016/S0165-0327(00)00338-4 van Tol, M.-J., van der Wee, N. J., van den Heuvel, O. A., Nielen, M. M., Demenescu, L. R., Aleman, A. et al. (2010). Regional Brain Volume in Depression and Anxiety Disorders. Archives of General Psychiatry, 67, 1002-1011. https://doi.org/10.1001/archgenpsychiatry.2010.121 van Tol, M.-J., Veer, I. M., van der Wee, N. J., Aleman, A., van Buchem, M. A., Rombouts, S. A. et al. (2013). Whole-Brain Functional Connectivity during Emotional Word Classification in Medication-Free Major Depressive Disorder: Abnormal Salience Circuitry and Relations to Positive Emotionality. NeuroImage: Clinical, 2, 790-796. https://doi.org/10.1016/j.nicl.2013.05.012 Wei, M., Qin, J., Yan, R., Bi, K., Liu, C., Yao, Z., & Lu, Q. (2015). Association of Resting-State Network Dysfunction with Their Dynamics of Inter-Network Interactions in Depression. Journal of Affective Disorders, 174, 527-534. https://doi.org/10.1016/j.jad.2014.12.020
Baidu
map