用密度泛函理论中的UB3LYP方法,研究了单重态和三重态势能面自旋禁阻反应Th(6d27S2) + C2H4→ThH3-CCH的微观机理。找到了两条反应通道,对其中涉及的两态反应(TSR)进行了分析。进而运用Hammond假设和Yoshizawa等的内禀坐标单点垂直激发计算的方法找出了一系列势能面交叉点[crossing points (CPs)],并作了相应的讨论。通过计算,讨论了势能面交叉和可能的自旋翻转过程。用Harvey等的方法优化出最低能量交叉(MECP),进一步讨论了Th与C2H4的反应中不同势能面之间的“系间窜越”(ISC)的可能性。最后,对前线分子轨道MECP2做了简单的讨论,这些理论结果可以作为进一步理论研究和实验的指导。 Using UB3LYP method in density functional theory, the micro mechanism of the singlet and triplet potential energy surfaces of the three spin forbidden reactions Th(6d27S2) + C2H4→ThH3-CCH was investigated. Two reaction channels were found, and the two state reaction (TSR) was analyzed. Then we used the method of single point vertical excitation calculation of intrinsic coordinates Hammond and Yoshizawa’s hypothesis, found a series of potential energy surface crossing point of [crossing points (CPs)], and made the corresponding discussion. By calculation, the crossover of potential energy surface and the spin flip process are discussed. Using Harvey and other methods to optimize the minimum energy crossover (MECP), the possibility of the “inter system channeling” (ISC) between different potential energy surfaces in the reaction of Th and C2H4is further discussed. In the end, we make a brief discussion on the frontier molecular orbital MECP2, which can be used as a guide for further theoretical research and experiment.
Th活化C
2H
4,密度泛函理论(DFT),势能面,最低能量交叉点(MECP), Th Actives C
2H
4
Density Functional Theory (DFT)
Potential Energy Surfaces
Minimum Energy Crossing Point (MECP)
气相中Th活化C2H4的自旋禁阻反应机理
王翠兰. 气相中Th活化C2H4的自旋禁阻反应机理 Spin Forbidden Reaction Mechanism of Th Activation of C2H4in Gas Phase[J]. 物理化学进展, 2016, 05(04): 112-121. http://dx.doi.org/10.12677/JAPC.2016.54013
参考文献 (References)References
Schröder, D., Shaik, S. and Schwarz, H. (2000) Two-State Reactivity as a New Concept in Organometallic Chemistry. Accounts of Chemical Research, 33, 139-145. http://dx.doi.org/10.1021/ar990028j
Ogliaro, F., Harris, N., Cohen, S., Filatov, M., de Visser, S.P. and Shaik, S. (2000) A Model “Rebound” Mechanism of Hydroxylation by Cy-tochrome P450: Stepwise and Effectively Concerted Pathways, and Their Reactivity Patterns. Journal of the American Chemical Society, 122, 8977-8989. http://dx.doi.org/10.1021/ja991878x
Olson, D.E. and Du Bois, J. (2008) Catalytic C-H Amination for the Preparation of Substituted 1,2-Diamines. Journal of the American Chemical Society, 130, 11248-11249. http://dx.doi.org/10.1021/ja803344v
Andrews, L. and Cho, H.G. (2006) Matrix Preparation and Spectroscopic and Theoretical Investigations of Simple Methylidene and Methylidyne Complexes of Group 4-6 Transition Metals. Organometallics, 25, 4040-4053. http://dx.doi.org/10.1021/om060318l
Davies, H.M.L. and Beckwith, R.E.J. (2003) Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid- Induced C-H Insertion. Chemical Reviews, 103, 2861-2904. http://dx.doi.org/10.1021/cr0200217
Proctor, D.L. and Davis, H.F. (2008) Vibrational vs. Translational Energy in Promoting a Prototype Metal-Hydrocar- bon Insertion Reaction. Proceedings of the National Academy of Sciences of the United States of America, 105, 12673- 12677. http://dx.doi.org/10.1073/pnas.0801170105
Lee, Y.K., Manceron, L. and Papai, I. (1997) An IR Matrix Isolation and DFT Theoretical Study of the First Steps of the Ti (0) Ethylene Reaction: Vinyl Titanium Hydride and Titanacyclopropene. Journal of Physical Chemistry A, 101, 9650-9659. http://dx.doi.org/10.1021/jp971870e
Cho, H.G. and Andrews, L. (2004) Hydrogen Elimination from Ethylene by Laser-Ablated Zr Atoms: An Infrared Spectroscopic Investigation of the Reaction Intermediates in a Solid Argon Matrix. Journal of Physical Chemistry A, 108, 3965-3972. http://dx.doi.org/10.1021/jp049566q
Cho, H.G. and Andrews, L. (2007) Matrix Infrared Spectroscopic Studies of the MH-C2H3 and MH2-C2H2 Intermediates in the Reactions of Ethylene with Laser-Ablated Group 5 Metal Atoms. Journal of Physical Chemistry A, 111, 5201-5210. http://dx.doi.org/10.1021/jp0702806
Cho, H.G. and Andrews, L. (2008) Infrared Spectra of Metallacyclo-propane, Insertion, and Dihydrido Complex Products in Reactions of Laser-Ablated Group 6 Metal Atoms with Ethylene Molecules. Journal of Physical Chemistry A, 112, 12071-12081. http://dx.doi.org/10.1021/jp806110h
Cho, H.G. and Andrews, L. (2009) Matrix Infrared Spectra of Dihydrido Cyclic and Trihydrido Ethynyl Products from Reactions of Th and U Atoms with Ethylene Molecules. Journal of Physical Chemistry A, 113, 5073-5081. http://dx.doi.org/10.1021/jp900610c
Yi, S.S., Blomberg, M.R.A., Siegbahn, P.E.M. and Weisshaar, J.C. (1998) Statistical Modeling of Gas-Phase Organometallic Reactions Based on Density Functional Theory: Ni+ + C3H8. Journal of Physical Chemistry A, 102, 395-411. http://dx.doi.org/10.1021/jp972674a
Blomberg, M., Siegbahn, P.E.M., Yi, S.S., Noll, R.J. and Weisshaar, J.C. (1999) Gas-Phase Ni+(2D5/2) + n-C4H10 Reaction Dynamics in Real Time: Experiment and Statistical Modeling Based on Density Functional Theory. Journal of Physical Chemistry A, 103, 7254-7267. http://dx.doi.org/10.1021/jp991561j
Jiao, C.Q. and Freiser, B.S. (1995) Reactions of Nbn+ (n = 2 - 6) with Ethylene in the Gas Phase: Collision-Induced Dissociation Studies of Ionic Products. Journal of Physical Chemistry A, 99, 3969-3977. http://dx.doi.org/10.1021/j100012a017
Stauffer, H.U., Hinrichs, R.Z., Schroden, J.J. and Davis, H.F. (2000) Dynamics of H2 and C2H4 Elimination in the Y + C2H6 Reaction. Journal of Physical Chemistry A, 104, 1107-1116. http://dx.doi.org/10.1021/jp993525q
Parnis, J.M.P., Lafleur, R.D. and Rayner, D.M. (1995) Hydrocarbon Reactivity with Early Transition Metal Atoms and Neutral Diatomic Metal Oxides in the Gas Phase. Journal of Physical Chemistry A, 99, 673-680. http://dx.doi.org/10.1021/j100002a035
Siegbahn, P.E.M., Blomberg, M.R.A. and Svensson, M. (1993) A Theoretical Study of the Activation of the Carbon- Hydrogen Bond in Ethylene by Second-Row Transition-Metal Atoms. Journal of the American Chemical Society, 115, 1952-1958. http://dx.doi.org/10.1021/ja00058a048
Blomberg, M.R.A., Siegbahn, P.E.M. and Svensson, M. (1992) Theoretical Study of the Binding of Ethylene to Second-Row Transition Metal Atoms. Journal of Physical Chemistry A, 96, 9794-9800. http://dx.doi.org/10.1021/j100203a040
Thompson, M.G.K. and Parnis, J.M. (2005) Photoinduced Ethane Formation from Reaction of Ethene with Matrix- Isolated Ti, V, or Nb Atoms. Journal of Physical Chemistry A, 109, 9465-9470. http://dx.doi.org/10.1021/jp0447542
Reichert, E.L., Yi, S.S. and Weisshaar, J.C. (2000) Bimo-lecular Ion-Molecule Collisions in Real Time: Co+ (3f4) + n-Butane and Isobutane Reactions. International Journal of Mass Spectrometry, 196, 55-69. http://dx.doi.org/10.1016/S1387-3806(99)00193-1
Carroll, J.J., Haug, K.L., Weisshaar, J.C., Blomberg, M.R.A., Siegbahn, P.E.M. and Svensson, M. (1995) Gas Phase Reactions of Second-Row Transition Metal Atoms with Small Hydrocarbons: Experiment and Theory. The Journal of Physical Chemistry, 99, 13955-13969. http://dx.doi.org/10.1021/j100038a030
Willis, P.A., Stauffer, H.U., Hinrichs, R.Z. and Davis, H.F. (1999) Reaction Dynamics of Zr and Nb with Ethylene. The Journal of Physical Chemistry A, 103, 3706-3720. http://dx.doi.org/10.1021/jp9846633
Gidden, J., van Koppen, P.A.M. and Bowers, M.T. (1997) Dehydroge-nation of Ethene by Ti+ and V+: Excited State Effects on the Mechanism for C-H Bond Activation from Kinetic Energy Release Distributions. Journal of the American Chemical Society, 119, 3935-3941. http://dx.doi.org/10.1021/ja964377+
Guo, B.C. and Castleman, Jr., A.W. (1992) Dehydrogenation of Ethylene and Propylene and Ethylene Polymerization Induced by Titanium(1+) in the Gas Phase. Journal of the American Chemical Society, 114, 6152-6158. http://dx.doi.org/10.1021/ja00041a037
Sanders, L., Hanton, S. and Weisshaar, J.C. (1987) Electron Spin State Selectivity in Transition Metal Ion Reactions: V+(a3F) + C2H6→VC2H4+ + H2. The Journal of Physical Chemistry, 91, 5145-5148. http://dx.doi.org/10.1021/j100304a001
Sievers, M.R., Jarvis, L.M. and Armentrout, P.B. (1998) Transi-tion-Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M = Ti-Cu, n = 1 and 2) Complexes. Journal of the American Chemical Society, 120, 1891-1899. http://dx.doi.org/10.1021/ja973834z
Simon, A., MacAleese, L., Boissel, P. and Maitre, P. (2002) Towards the Characterization of the Mechanism of the Sequential Activation of Four Methane Molecules by Ta+. International Journal of Mass Spectrometry, 219, 457-473. http://dx.doi.org/10.1016/S1387-3806(02)00700-5
Cho, H.G. and Andrews, L. (2005) Infrared Spectrum and Structure of CH2=ThH2. The Journal of Physical Chemistry A, 109, 6796-6798. http://dx.doi.org/10.1021/jp052918o
Lyon, J.T., Andrews, L., et al. (2007) Infrared Spectrum and Bonding in Uranium Methylidene Dihydride, CH2=UH2. Inorganic Chemistry, 46, 4917-4925. http://dx.doi.org/10.1021/ic062407w
Frisch, M.J., et al. (2003) GAUSSIAN 03 (Revision-E.01), Gaussian, Inc., Pittsburgh, PA.
Liu, Z., Zhong, L., Yang, Y., Cheng, R. and Liu, B. (2011) DFT and CASPT2 Study on the Mechanism of Ethylene Dimerization over Cr(II)OH+ Cation. The Journal of Physical Chemistry A, 115, 8131-8141. http://dx.doi.org/10.1021/jp111108p
Wang, T., Brudvig, G. and Batista, V.S. (2010) Characterization of Proton Coupled Electron Transfer in a Biomimetic Oxomanganese Complex: Evaluation of the DFT B3LYP Level of Theory. Journal of Chemical Theory and Computation, 6, 755-760. http://dx.doi.org/10.1021/ct900615b
Cao, Z. and Ren, T. (2011) DFT Study of Electronic Properties of 3d Metal Complexes of σ-Geminal Diethynylethenes (gem-DEEs). Organometallics, 30, 245-250. http://dx.doi.org/10.1021/om100870k
McLean, A.D. and Chandler, G.S. (1980) Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z=11-18. The Journal of Chemical Physics, 72, 5639-5648. http://dx.doi.org/10.1063/1.438980
Raghavachari, K., Trucks, G.W. and Pople, J.A. (1989) A Fifth-Order Perturbation Comparison of Electron Correlation Theories. Chemical Physics Letters, 157, 479-483. http://dx.doi.org/10.1016/S0009-2614(89)87395-6
Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M. and Weinhold, F. (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison.
Yoshizawa, K., Shiota, Y. and Yamabe, T. (1999) Methane-Methanol Conversion by MnO+, FeO+, and CoO+: A Theoretical Study of Catalytic Selectivity. Journal of the American Chemical Society, 120, 564-572. http://dx.doi.org/10.1021/ja971723u
Harvey, J.N., Aschi, M., Schwarz, H. and Koch, W. (1998) The Singlet and Triplet States of Phenyl Cation. A Hybrid Approach for Locating Minimum Energy Crossing Points between Non-Interacting Potential Energy Surfaces. Theoretical Chemistry Accounts, 99, 95-99. http://dx.doi.org/10.1007/s002140050309
Dai, G.L. and Fan, K.N. (2006) Theoretical Study of the Reaction of Sc+ with SCO in Gas Phase. Journal of Molecular Structure: THEOCHEM, 778, 55-61. http://dx.doi.org/10.1016/j.theochem.2006.08.043
Turro, N.J. (1987) Modern Molecular Photochemistry. Science Press, Beijing.
Chatt, J. and Duncanson, L.A. (1953) 586. Olefin Co-Ordination Compounds. Part III. In-fra-Red Spectra and Structure: Attempted Preparation of Acetylene Complexes. Journal of the Chemical Society, 2939-2947. http://dx.doi.org/10.1039/jr9530002939
Wang, X. and Andrews, L. (2002) Neon Matrix Infrared Spectra and DFT Calculation of Tungsten Hydrides WHx (x = 1-4, 6). The Journal of Physical Chemistry A, 106, 6720-6729. http://dx.doi.org/10.1021/jp025920d
Wang, C.L., Wang, Y.C., Jin, Y.Z., Ji, D.F., La, M.J., Ma, W.P. and Nian, J.Y. (2011) Theoretical Study of the C-H Bond in C2H4 by the Group 5 Metal Actoms (V, Nb, Ta) in the Gas-Phase. Computational and Theoretical Chemistry, 974, 43-51. http://dx.doi.org/10.1016/j.comptc.2011.07.010