本文讨论Cauchy收敛、Cesaro收敛、以及Abel收敛性之间的关系。给出了若干反例说明这三种收敛性一个比一个弱,并且通过增加适当的条件给出较弱形式的逆命题。 In this paper, we discuss the relationship between Cauchy convergence, Cesaro convergence and Abel convergence. Some examples are given to show that the three kinds of Cenvergence are weaker one by one. Furthermore, by adding some mild conditions the weaker type inverse propositions are presented.
Cauchy收敛,Cesaro收敛,Abel收敛, Cauchy Convergence
Cesaro Convergence
Abel Convergence
关于序列收敛性的一个注记
吴 健,周 廖,孙成恩. 关于序列收敛性的一个注记A Note on the Convergence of Sequence[J]. 理论数学, 2016, 06(05): 398-401. http://dx.doi.org/10.12677/PM.2016.65054
参考文献 (References)References
Korevaar, J. (2004) Tauberian Theory. A Century of Developments. Grundlehren der Mathematichen Wissenschaften 329. Springer-Verlag, xvi+483.
Montgomery, H.L. and Vaughan, R.C. (2007) Multiplicative Number Theory I. Classical Theory (Cambridge Studies in Advanced Mathematics). Cambridge University Press, Cambridge, 147-167.
Tauber, A. (1897) Ein Satz aus der Theorie der unendlichen Reihen [A Theorem about Infinite Series]. Monatshefte fur Mathematik und Physik, 8, 273-277. http://dx.doi.org/10.1007/BF01696278 (in German)
Wiener, N. (1932) Tauberian Throrems. Annals of Mathematics, 33, 1-100. http://dx.doi.org/10.2307/1968102
Stoll, M. (2004) Introduction to Real Analysis. Chinese Machine Press, Beijing.