在密度泛函理论框架下,利用GGA + U方法,本文对二氧化钒的金属绝缘体相变及电学性质进行了详细的研究。研究发现,一旦考虑占位关联效应,不管在高温R相还是低温M1相的二氧化钒中都可以得到绝缘体态。然而在M1相中,能隙的突然打开现象与实验观测现象非常一致。另外,在金属绝缘体相变过程中,中心钒原子和其周边的6个氧配位体之间发生了一个有趣的电荷转移现象。这一现象表明二氧化钒中发生的金属绝缘体相变应该属于电荷转移型。 In the framework of density functional theory, the electronic structure and the metal-insulator transition (MIT) mechanism of vanadium dioxide are investigated by GGA + U method. With on- site correlation effects, insulating states can be obtained in both high temperature rutile and low temperature monoclinic structures. Suddenly opening of the energy gap in the monoclinic phase is consistent with the experimental observation. Furthermore, an interesting charge-transfer from the center V ion to the 6 O ligands has been found during the MIT process, which suggests that such a MIT should be a charge-transfer type.
孔龙娟,刘光华,强凌. 二氧化钒电荷转移型金属绝缘体相变及电学性质研究Charge-Transfer Metal-Insulator Transitions and Electronic Properties in Vanadium Dioxide[J]. 凝聚态物理学进展, 2015, 04(04): 119-127. http://dx.doi.org/10.12677/CMP.2015.44014
参考文献 (References)References
Mott, N.F. (1968) Metal-Insulator Transition. Reviews of Modern Physics, 40, 677-683.
http://dx.doi.org/10.1103/RevModPhys.40.677
Adler, D. (1968) Mechanisms for Metal-Nonmental Transitions in Transition-Metal Oxides and Sulfides. Reviews of Modern Physics, 40, 714-736.
http://dx.doi.org/10.1103/RevModPhys.40.714
Shin, S., Suga, S., Taniguchi, M., Fujisawa, M., Kanzaki, H., Fujimori, A., Daimon, H., Ueda, Y., Kosuge, K. and Kachi, S. (1990) Vacuum-Ultraviolet Reflectance and Photoemission Study of the Metal-Insulator Phase Transitions in VO2, V6O13, and V2O3. Physical Review B, 41, Article ID: 4993.
http://dx.doi.org/10.1103/PhysRevB.41.4993
Bermudez, V.M., Williams, R.T., Long, J.P., Reed, R.K. and Klein, P.H. (1992) Photoemission Study of Hydrogen Adsorption on Vanadium Dioxide near the Semiconductor-Metal Phase Transition. Physical Review B, 45, Article ID: 9266.
http://dx.doi.org/10.1103/PhysRevB.45.9266
Uozumi, T., Okada, K. and Kotani, A.J. (1993) Electronic structures of Ti and V Oxides: Calculation of Valence Photoemission and Bremsstrahlung Isochromat Spectra. Journal of the Physical Society of Japan, 62, 2595-2599.
http://dx.doi.org/10.1143/jpsj.62.2595
Goering, E., Schramme, M., Müller, O., Barth, R., Paulin, H., Klemm, M., Denboer, M.L. and Horn, S. (1997) LEED and Photoemission Study of the Stability of VO2 Surfaces. Physical Review B, 55, Article ID: 4225.
http://dx.doi.org/10.1103/PhysRevB.55.4225
Kim, H.T., Chae, B.G., Youn, D.H., Maeng, S.L., Kim, G., Kang, K.Y. and Lim, Y.S. (2004) Mechanism and Observation of Mott transition in VO2-Based Two-And Three-Terminal Devices. New Journal of Physics 6, 52.
http://dx.doi.org/10.1088/1367-2630/6/1/052
Kim, H.T., Chae, B.G., Youn, D.H., Lee, S.J., Kim, K. and Lim, Y.S. (2005) Raman Study of Electric-Field-Induced First-Order Metal-Insulator Transition in VO2-Based Devices. Applied Physics Letters, 86, 242101.
http://dx.doi.org/10.1063/1.1941478
Kim, B.J., Lee, Y.W., Choi, S., Lim, J.W., Yun, S.J., Kim, H.T., Shin, T.J. and Yun, H.S. (2008) Micrometer X-Ray Diffraction Study of VO2 Films: Separation between Metal-Insulator Transition and Structural Phase Transition. Physical Review B, 77, Article ID: 235401.
Eguchi, R., Taguchi, M., Matsunami, M., Horiba, K., Yamamoto, K., Ishida, Y., Chainani, A., Takata, Y. and Yabashi, M. (2008) Photoemission Evidence for a Mott-Hubbard Metal-Insulator Transition in VO2. Physical Review B, 78, Article ID: 075115.
Goodenough, J.B. (1960) Direct Cation—Cation Interactions in Several Oxides. Physical Review, 117, 1442-1451.
http://dx.doi.org/10.1103/PhysRev.117.1442
Caruthers, E., Kleinman, L. and Zhang, H.I. (1973) Energy Bands of Metallic VO2.. Physical Review B, 7, 3753-3760.
http://dx.doi.org/10.1103/PhysRevB.7.3753
Zylbersztejn, A. and Mott, N.F. (1975) Metal-Insulator Transition in Vanadium Dioxide. Physical Review B, 11, 4383- 4395.
http://dx.doi.org/10.1103/PhysRevB.11.4383
Sommers, C., De Groot, R., Kaplan, D. and Zylbersztejn, A. (1975) Cluster Calculations of the Electronic D-States in VO2. Journal de Physique Lettres, 36, 157-160.
http://dx.doi.org/10.1051/jphyslet:01975003605015700
Wentzcovitch, R.M., Schulz, W.W. and Allen, P.B. (1994) VO2: Peierls or Mott-Hubbard? A View from Band Theory. Physical Review Letters, 72, 3389-3392.
http://dx.doi.org/10.1103/PhysRevLett.72.3389
Rice, T.M., Launois, H. and Pouget, J.P. (1994) Comment on “VO2: Peierls or Mott-Hubbard? A View from Band Theory”. Physical Review Letters, 73, Article ID: 3042.
http://dx.doi.org/10.1103/PhysRevLett.73.3042
Huang, X.Y., Yang, W.D. and Eckern, U. (1998) Met-al-Insulator Transition in VO2: A Peierls-Mott-Hubbard Mechanism. http://arxiv.org/abs/cond-mat/9808137
Biermann, S., Poteryaev, A., Lichtenstein, A.I. and Georges, A. (2005) Dynamical Singlets and Correlation-Assisted Peierls Transition in VO2. Physical Review Letters, 94, Article ID: 026404.
http://dx.doi.org/10.1103/PhysRevLett.94.026404
Sakuma, R., Miyake, T. and Aryasetiawan, F. (2008) First-Principles Study of Correlation Effects in VO2. Physical Review B, 78, Article ID: 075106.
http://dx.doi.org/10.1103/PhysRevB.78.075106
Morin, F.J. (1959) Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Physical Review Letters, 3, 34-36.
http://dx.doi.org/10.1103/PhysRevLett.3.34
Boyce, J.B., Bridges, F.G., Claeson, T., Geballe, T.H., Li, G.G. and Sleight, A.W. (1991) Local Structure of BaBixPb1−xO3 Determined by X-Ray-Absorption Spectroscopy. Physical Review B, 44, 6961-6972.
http://dx.doi.org/10.1103/PhysRevB.44.6961
Kim, H.T. (2000) Extension of the Brinkman-Rice Picture and the Mott Transition. Physica C: Superconductivity, 341, 259-260.
http://dx.doi.org/10.1016/S0921-4534(00)00469-X
Brinkman, W.F. and Rice, T.M. (1970) Application of Gutzwiller’s Variational Method to the Metal-Insulator Transition. Physical Review B, 2, 4302-4304.
http://dx.doi.org/10.1103/PhysRevB.2.4302
Laad, M.S., Craco, L. and Müller-Hartmann, E. (2006) Met-al-Insulator Transition in Rutile-Based VO2. Physical Review B, 73, Article ID: 195120.
http://dx.doi.org/10.1103/PhysRevB.73.195120
Arcangeletti, E., Baldassarre, L., Di Castro, D., Lupi, S., Malavasi, L., Marini C., Perucchi, A. and Postorino, P. (2007) Evidence of a Pressure-Induced Metallization Process in Monoclinic VO2. Physical Review Letters, 98, Article ID: 196406.
http://dx.doi.org/10.1103/PhysRevLett.98.196406
Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. and Payne, M.C. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
http://dx.doi.org/10.1088/0953-8984/14/11/301
Perdew, J.P. and Wang, Y. (1992) Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Physical Review B, 45, 13244-13249.
http://dx.doi.org/10.1103/PhysRevB.45.13244
Hammer, B., Hansen, L.B. and Norskov, J.K. (1999) Im-proved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B, 59, 7413-7421.
http://dx.doi.org/10.1103/PhysRevB.59.7413
Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188- 5192.
http://dx.doi.org/10.1103/PhysRevB.13.5188
McWhan, D.B., Marezio, M., Remeika, J.P. and Dernier, P.D. (1974) X-Ray Diffraction Study of Metallic VO2. Physical Review B, 10, 490-495.
http://dx.doi.org/10.1103/PhysRevB.10.490
Longo, J.M. and Kierkegaard, P. (1970) A Refinement of the Structure of VO2. Acta Chemica Scandinavica, 24, 420- 426.
http://dx.doi.org/10.3891/acta.chem.scand.24-0420
Verleur, H.W., Barker Jr., A.S. and Berglund, C.N. (1968) Optical Properties of VO2 between 0.25 and 5 eV. Physical Review, 172, 788-798.
http://dx.doi.org/10.1103/PhysRev.172.788
Ladd, L.A. and Paul, W. (1969) Optical and Transport Properties of High Quality Crystals of V2O4 near the Metallic Transition Temperature. Solid State Communications, 7, 425-428.
http://dx.doi.org/10.1016/0038-1098(69)90888-6
Koethe, T.C., Hu, Z., Haverkort, M.W., Schüßler-Langeheine, C., Venturini, F., Brookes, N.B., Tjernberg, O., Reichelt, W., Hsieh, H.H., Lin, H.J., Chen, C.T. and Tjeng, L.H. (2006) Transfer of Spectral Weight and Symmetry across the Metal-Insulator Transition in VO2. Physical Review Letters, 97, Article ID: 116402.
http://dx.doi.org/10.1103/PhysRevLett.97.116402
Chung, W. and Freericks, J.K. (1998) Charge-Transfer Metal-Insulator Transitions in the Spin-12 Falicov-Kimball Model. Physical Review B, 57, 11955-11961.
http://dx.doi.org/10.1103/PhysRevB.57.11955
Marezio, M., McWhan, D.B., Dernier, P.D. and Remeika, J.P. (1972) Charge Localization at Metal-Insulator Transitions in Ti4O7 and V4O7. Physical Review Letters, 28, 1390-1393.
http://dx.doi.org/10.1103/PhysRevLett.28.1390
Avci, R. and Flynn, C.P. (1978) Charge-Transfer Insulators. Physical Review Letters, 41, 428-431.
http://dx.doi.org/10.1103/PhysRevLett.41.428
Hague, C.F., Mariot, J.M., Ilakovac, V. and Delaunay, R. (2008) Charge Transfer at the Metal-Insulator Transition in V2O3 Thin Films by Resonant Inelastic X-Ray Scatterin. Physical Review B, 77, Article ID: 045132.
http://dx.doi.org/10.1103/PhysRevB.77.045132