MS Material Sciences 2160-7613 Scientific Research Publishing 10.12677/MS.2013.33022 MS-11846 MS20130300000_41803063.pdf 化学与材料 MgO(111)上ZnO薄膜的外延生长及其结构和光学特性 Structural and Optical Properties of ZnO Thin Films Grown on MgO(111) Substrates by Molecular Beam Epitaxy 达敏 2 1 惠琼 2 1 2 1 亚平 2 1 2 1 建芳 2 1 加法 2 1 琳哲 2 1 纯淼 2 1 晓航 2 1 华翰 2 1 俊勇 2 1 厦门大学物理系,福建省半导体材料及应用重点实验室 null 24 05 2013 03 03 116 120 Apr. 24th, 2013 Apr. 26th, 2013 May 7th, 2013 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

由于 ZnO 在光电器件的应用前景,其高质量薄膜的制备是研究热点之一。本文通过分子束外延生长法在 MgO(111) 单晶衬底上生长 ZnO 薄膜,表征了其结构和特性,探讨了不同生长条件对薄膜质量的影响。结果表明,先低温生长 ZnO 缓冲层,再高温生长 ZnO 薄膜,有望提高 ZnO 薄膜的质量。原位反射高能电子束衍射 ( RHEED ) 和异位的 X 射线衍射 (XRD) 分别测量出薄膜的面内结构和沿 [0001] 的单晶域高取向结构,并确定薄膜和衬底的外延关系为 ZnO [01-10]//MgO[1-10] 和 ZnO[2-1-10]//MgO[11-2] 。透射谱显示了 ZnO 的特征光学带隙。
The growth of high quality ZnO films is highly desirable due to the promising applications of ZnO in optoelectronics. In this paper, ZnO films were grown on the MgO(111) substrates via the growth technique of molecular- beam epitaxy and their structural and optoelectronic properties were characterized. In particular, the influence of growth condition on the film qualify was investigated. The results show that, inducing a low temperature ZnO buffer layer before the high temperature growth of ZnO films will help to improve the film quality. In situ reflection high-energy electron diffraction (RHEED) and ex situ X-ray Diffraction (XRD) measurements indicate that the ZnO film and the MgO substrate follow the epitaxial relationship : ZnO[01-10]//MgO[1-10] and ZnO[2-1-10]//MgO[11-2]. Transmission Spectra show the characteristic optical bandgap of ZnO.

分子束外延;反射高能电子衍射;透射谱;缓冲层;位错密度, MBE; RHEED; XL; Buffer; Dislocation Density
1. 引言

ZnO作为第三代宽禁带半导体材料,因其激子束缚能(室温下为60 meV)远高于GaN,并具有更高的化学稳定性和低成本等优势,从而在紫外发光二极管和激光器等方面有着广泛的应用前景[1-5]。ZnO在室温下呈六方的纤锌矿结构,可通过在具有六方结构的ZnO, GaN和蓝宝石等衬底上外延获得[ 6 ]。其中蓝宝石因成本相对更低而成为最常用的外延衬底。然而蓝宝石和ZnO薄膜之间有较大的晶格失配度(18%),常常导致所生长的ZnO薄膜呈30˚旋转,薄膜质量较差,其表面粗糙度也较大。引入低温MgO或者同质低温ZnO缓冲层可以极大地改善外延ZnO薄膜的晶体质量,有效地减低位错密度[7-9]。但是在蓝宝石上生长ZnO时,在引入MgO缓冲层的同时,也存在着因MgO厚度变化而引起的从纤锌矿向岩盐矿转化的相变问题[ 10 ],缓冲层中存在的ZnMgO团簇也可能导致可见光的发射[ 11 ]。本文利用分子束外延技术(MBE),直接在单晶MgO(111)衬底上外延生长ZnO薄膜,研究生长条件对ZnO薄膜质量的影响,获得单域C轴取向的ZnO薄膜,结果表明加入低温ZnO缓冲层的薄膜质量相对较好。另一方面,以半导体为基础的有源器件和以功能立方钙钛矿型氧化物为基础的无源器件是现代微电子器件的需求之一[12-15]。研究ZnO在立方的MgO衬底上的生长机制,也有望为ZnO和更复杂的立方钙钛矿的结合提供初步的制备指南。

2. 实验方法

生长实验在配备有原位的RHEED、扫描隧道显微镜(STM)等表面探测技术的OMICON超高真空MBE系统中进行。在放入MBE生长腔之前,单晶MgO(111)衬底用丙酮和酒精在室温下交替超声清洗三遍,每遍5分钟。在放入生长腔之后,MgO(111)衬底先在温度为350℃,氧偏压为6.5 × 10−5mbar,射频功率为250 W的条件下退火一小时。生长时,先在衬底温度为380℃,氧偏压为6.5 × 10−5mbar,射频功率为250 W的条件下低温生长10分钟的缓冲层;再在525℃下高温退火45分钟(氧偏压仍为6.5 × 10−5mbar,射频功率仍为250 W);最后在更高的衬底温度550℃,氧偏压5 × 10−5mbar和功率250 W的高温条件下生长一小时。为了作比较,另一组生长实验没有引入缓冲层,而是改变衬底温度,分别在200℃、300℃和350℃的条件下直接生长ZnO薄膜。氧偏压和射频功率和引入缓冲层时的高温生长条件一样。实验中Zn源的纯度为99.9999%,蒸发源炉的温度保持在360℃。通过反射高能电子衍射(RHEED)、X射线衍射(XRD)等表征了薄膜和衬底的外延关系,并通过XRD的半高宽以及原子力显微镜(AFM)所测得的表面粗糙度比较了衬底温度以及加入低温ZnO缓冲层等生长条件对薄膜质量的影响。光学特性通过透射谱(XL)进行表征。

3. 实验结果和讨论

图1为MgO(111)衬底上外延ZnO时先引入低温缓冲层再高温生长的原位RHEED图的演变情况。退火后的MgO(111)表面为(1 × 1)结构,显示出良好的表面平整,如图1(a)中的RHEED所示。其中电子束入射方向分别沿着[1-10]和[11-2]晶轴。当低温ZnO缓冲层生长30秒时,开始出现ZnO的衍射图样,衍射点的间距比衬底MgO的小2%,这是由于C轴方向ZnO受到压应力的缘故。随着生长的进行,ZnO的衍射点逐渐变得清晰,10分钟的低温生长后,衍射斑点的间距比衬底小8.8%,并在后续的525℃高温退火45分

图1. 在MgO(111)上生长ZnO的RHEED衍射图样:(a) 退火处理后MgO(111);(b) 380℃生长10 mins的ZnO缓冲层;(c) 缓冲层在525℃退火45分钟;(d) 高温550℃生长60分钟。其中(c) 图中虚线矩形框(a1*, c1*)和(a2*, c2*)分别代表ZnO的两套倒易晶格钟(图1(c))和550℃高温生长60分钟过程中保持不变(图1(d))。由于MgO[1-10]和[11-2]轴相差30˚,并且ZnO的衍射图和MgO的衍射图是同向的,样品每转60˚,相应ZnO的衍射图案会重复出现一次,这就说明ZnO是六度对称的,沿C轴取向生长的纤锌矿结构。图1(c)中,a*1:c*1 ≈ 1.8和a*2:c*2 ≈ 1.6分别对应着ZnO的c:(a/2) 和c/2:(a/2)。我们课题组之前报导过,在MgO(100)衬底上外延生长ZnO薄膜时时,会出现a*1:c*1和a*2:c*2两套倒易格子同时出现在同一衍射方向的情况[ 16 ]。而MgO(111)上外延生长的ZnO薄膜,一个衍射方向只对应一套单一的倒易晶格,这说明在MgO(111)上生长的ZnO是单域的纤锌矿结构,此结果与ZnO的同质外延结果一样[ 17 ]。比较图1中的MgO衬底衍射图和ZnO薄膜衍射图可以得出,ZnO薄膜和MgO衬底的外延关系是ZnO[1-210]//MgO[1- 10]和ZnO[1-100]//MgO[11-2]。图1中ZnO的RHEED结果呈现出点状的衍射图样。这些衍射斑点是由透射而不是反射产生的,由此可以推断出三维的生长模式。对于没有加入低温缓冲层,而直接在200℃、300℃和350℃的条件下直接生长的ZnO薄膜,其RHEED结果,同样呈现出点状的衍射图样。

图2(a)给出了衬底MgO以及在不同条件下生长的ZnO薄膜的XRD q-2q扫描图。与衬底MgO(111)的XRD图比较,ZnO薄膜均有并且仅有(002)六角纤锌矿的衍射峰,表明在不同温度下生长的ZnO薄膜均表现良好的沿C轴[ 0001 ]方向生长的特性。由XRD衍射峰的半高宽可以推算出薄膜的螺位错和韧位错的密度[ 18 ]

其中β为XRD摇摆曲线的半高宽,b为伯格斯矢量。对于具有纤锌矿结构的[ 0001 ]取向的ZnO薄膜,不考虑刃位错的情形,取bscrew的值为0.5206 nm。表1列出了经高斯拟合后的ZnO薄膜(002)XRD衍射峰的半高宽以及对应的螺位错密度,可知随着生长温度的提高,ZnO薄膜表现出较高的结晶度,(002)峰的半高宽和螺位错密度逐渐减小。为了进一步研究ZnO薄膜和衬底MgO(111)界面之间的关系,我们做了引入低温缓冲层的ZnO薄膜的{10~11}和MgO衬底的{111}

图2. XRD结果:(a) MgO衬底和不同条件下生长的ZnO薄膜的q-2q 扫描图;(b) 引入低温缓冲层的ZnO薄膜的{10-11}和MgO衬底的{111}衍射的XRD Φ扫描结果;(c) 立方MgO(111)晶面和外延的六角纤锌矿ZnO界面间的关系

表1. 不同温度下ZnO薄膜的高斯拟合半高宽和螺位错密度

的Φ扫描。如图2(a)所示,在0˚~360˚内,每隔60˚出现一个尖锐的衍射峰,共六个,说明生长的ZnO是单域的六角纤锌矿相,并没有发生旋转或者存在其他的相。图2(b)给出了两者之间的界面关系,可见由于MgO(111)面的六角结构与纤锌矿ZnO晶格之间的匹配,使得ZnO薄膜呈现C轴择优取向生长。

图3(a)~(d)分别是在衬底温度为200℃,300℃,350℃,550℃(并引入缓冲层)的条件下生长的ZnO薄膜的AFM图。表面RMS粗糙度分别是8.732,8.895,7.559以及8.061 nm,样品的表面粗糙度比较大,近邻颗粒之间形成30~40 nm左右的孔洞。其中引入缓冲层而生长的ZnO薄膜的颗粒尺寸最大,可能是由于在550℃的高温生长,Zn原子和O原子具有高的迁移率和扩散率,易被已成核的ZnO吸附,导致近邻颗粒间相互交叠。(e)图显示了(d)图的三维视角图,可以看

图3. 在不同温度下生长的ZnO薄膜表面形貌图:(a) 200℃ (b) 300℃ (c) 350℃ (d) 550℃(引入缓冲层),其中(d)图的三维效果图如(e)图所示

出薄膜遵循三维岛状生长模式,与RHEED结果一致。

图4是引入缓冲层并在高温下生长的ZnO薄膜的室温透射谱。其光学带隙大约在380 nm (3.26 eV)处左右,有较强的近紫外带边吸收。通过高斯拟合后,其透射谱峰的半高宽为12.96 nm,紫外带边锋的峰位与ZnO体材料相比,有40 meV的红移,这很可能是由于纳米材料的晶格失配和压应力引起的;而可见光部分的透射率达到90%以上。

3. 结论

我们在单晶MgO(111)衬底上用MBE生长制备了ZnO薄膜样品。由于MgO(111)面的正六边形与ZnO(0001)的六角匹配,ZnO薄膜沿着C轴择优取向生长。XRD的q-2q和Φ扫描均表明ZnO为纤锌矿相单域的结构;XRD衍射峰的半高宽表明提高生长温度和引入缓冲层能有效地降低螺位错密度,提高薄膜的晶体质量。RHEED结果表明ZnO薄膜的外延关系是ZnO[1-210]//MgO[1-10]和ZnO[1-100]//MgO[11-2]。室温透射谱显示ZnO薄膜具有较强的近紫外带边吸收。该研究结果显示,在蓝宝石等异质衬底上生长ZnO薄膜时,如先引入MgO(111)缓冲层,再引入低温ZnO缓冲层,则将有望进一步提高ZnO的薄膜质量。然而AFM结果表明薄膜为三维岛状生长模式,有着比较大的粗糙度。因而如何实现ZnO的横向外延二维生长,进一步提高薄膜的光学性质,是我们下一步研究的重点。

4. 致谢

本文获得国家自然科学基金(编号:11204253)、

图4. 室温下ZnO薄膜的透射谱,在380 nm (3.26 eV)处是紫外近带边锋,纵轴取取导数

教育部博士点基金(编号:20100121120026)、福建省自然科学基金(编号:2010J05138)的资助。

参考文献 (References)

[ 1 ] D. M. Bannall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 1997, 70(17): 2230-2232.

[ 2 ] Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Applied Physics Letters, 1998, 73: 3270-3272.

[ 3 ] Y. R. Yu, T. S. Lee, J. A. Lubguban, et al. Next generation of Oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108-241111.

[ 4 ] M. H. Huang, S. Mao, H. Feik, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899.

[ 5 ] H. S. Kim, F. Lugo, S. J. Pearton, et al. Phoaphorus doped ZnO light emitting diodes fabricated via pulsed deposition. Applied Physics Letters, 2008, 92: 112108-112111.

[ 6 ] F. Hamdani, A. E. Botchkarev, H. Tang, et al. Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO. Applied Physics Letters, 1997, 71(21): 3111-3113.

[ 7 ] Y. F. Chen, S. K. Hong, H. J. Ko, et al. Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch. Applied Physics Letters, 2001, 78(21): 3352-3354.

[ 8 ] Y. F. Chen, H. J. Ko, S. K. Hong, et al. Layer-by-layer growth of ZnO epilayer on Al2O3(0001) by using a MgO buffer layer. Applied Physics Letters, 2000, 76: 559-561.

[ 9 ] Y. F. Chen, H. J. Ko, S. K. Hong, et al. Evolution of initial layers of plasma-assisted MBE grown ZnO on (0001) GaN/sapphire. Journal of Crystal Growth, 2000, 214-215: 81-86.

[ 10 ] H. Kato, K. Miyamoto, M. Sano, et al. Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness. Applied Physics Letters, 2004, 84(22): 4562-4564.

[ 11 ] B. J. Jin, S. Im, S. Y. Lee, et al. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1-2): 107-110.

[ 12 ] G. T. Du, Y. G. Cui, X. X. Chuan, et al. Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2007, 790: 243504-6.

[ 13 ] W. Huang, J. Y. Dai, J. H. Hao, et al. Structure and resistance switching properties of ZnO/SrTiO3/GaAs heterostructure grown by laser molecular beam epitaxy. Applied Physics Letters, 2010, 97(16): 162905.

[ 14 ] V. M. Voora, T. Hofmann, M. Brandt, et al. Resistive hysteresis and interface charge coupling in BaTiO3-ZnO heterostructures. Applied Physics Letters, 2009, 94: 142904.

[ 15 ] Y. L. Wu, L. W. Zhang, G. L. Xie, et al. Fabrication and transport propertied of ZnO/Nb—1 wt%—doped SrTiO3epitaxial heterojunctions. Applied Physics Letters, 2008, 92(1): 012115.

[ 16 ] H. Zhou, H. Q. Wang, L. J. Wu, et al. Wurtzite ZnO(001) films grown on cubic MgO(001) with bulk-like opto-electronic properties. Applied Physics Letters, 2011, 99(14): 141917.

[ 17 ] H. Zhou, H. Q. Wang, X. X. Liao, et al. Tailoring of polar and nonpolar ZnO planes on MgO(001) substrates through molecular beam epitaxy. Nanoscale Research Letters, 2012, 7: 184.

[ 18 ] X. H. Zheng, H. Chen, Z. B. Yan, et al. Determination of twist angle in plane mosaic spread GaN films by high-resolution X-ray diffraction. Journal of crystal Growth, 2003, 255(1-2): 63-67.

NOTES References D. M. Bannall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 1997, 70(17): 2230-2232. Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Applied Physics Letters, 1998, 73: 3270-3272. Y. R. Yu, T. S. Lee, J. A. Lubguban, et al. Next generation of Oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108-241111. M. H. Huang, S. Mao, H. Feik, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899. H. S. Kim, F. Lugo, S. J. Pearton, et al. Phoaphorus doped ZnO light emitting diodes fabricated via pulsed deposition. Applied Physics Letters, 2008, 92: 112108-112111. F. Hamdani, A. E. Botchkarev, H. Tang, et al. Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO. Applied Physics Letters, 1997, 71(21): 3111-3113. Y. F. Chen, S. K. Hong, H. J. Ko, et al. Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch. Applied Physics Letters, 2001, 78(21): 3352-3354. Y. F. Chen, H. J. Ko, S. K. Hong, et al. Layer-by-layer growth of ZnO epilayer on Al2O3(0001) by using a MgO buffer layer. Applied Physics Letters, 2000, 76: 559-561. Y. F. Chen, H. J. Ko, S. K. Hong, et al. Evolution of initial layers of plasma-assisted MBE grown ZnO on (0001) GaN/sapphire. Journal of Crystal Growth, 2000, 214-215: 81-86. H. Kato, K. Miyamoto, M. Sano, et al. Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness. Applied Physics Letters, 2004, 84(22): 4562-4564. B. J. Jin, S. Im, S. Y. Lee, et al. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1-2): 107-110. G. T. Du, Y. G. Cui, X. X. Chuan, et al. Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2007, 790: 243504-6. W. Huang, J. Y. Dai, J. H. Hao, et al. Structure and resistance switching properties of ZnO/SrTiO3/GaAs heterostructure grown by laser molecular beam epitaxy. Applied Physics Letters, 2010, 97(16): 162905. V. M. Voora, T. Hofmann, M. Brandt, et al. Resistive hysteresis and interface charge coupling in BaTiO3-ZnO heterostructures. Applied Physics Letters, 2009, 94: 142904. Y. L. Wu, L. W. Zhang, G. L. Xie, et al. Fabrication and transport propertied of ZnO/Nb—1 wt%—doped SrTiO3 epitaxial heterojunctions. Applied Physics Letters, 2008, 92(1): 012115. H. Zhou, H. Q. Wang, L. J. Wu, et al. Wurtzite ZnO(001) films grown on cubic MgO(001) with bulk-like opto-electronic pro- perties. Applied Physics Letters, 2011, 99(14): 141917. H. Zhou, H. Q. Wang, X. X. Liao, et al. Tailoring of polar and nonpolar ZnO planes on MgO(001) substrates through molecular beam epitaxy. Nanoscale Research Letters, 2012, 7: 184. X. H. Zheng, H. Chen, Z. B. Yan, et al. Determination of twist angle in plane mosaic spread GaN films by high-resolution X-ray diffraction. Journal of crystal Growth, 2003, 255(1-2): 63-67.
Baidu
map