References
Ferguson, B.S., Rogatzki, M.J., Goodwin, M.L., Kane, D.A., Rightmire, Z. and Gladden, L.B. (2018) Lactate Metabolism: Historical Context, Prior Misinterpretations, and Current Understanding. European Journal of Applied Physiology, 118, 691-728. >https://doi.org/10.1007/s00421-017-3795-6
Warburg, O. (1925) The Metabolism of Carcinoma Cells. The Journal of Cancer Research, 9, 148-163. >https://doi.org/10.1158/jcr.1925.148
Chen, L. and Cui, H. (2015) Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. International Journal of Molecular Sciences, 16, 22830-22855. >https://doi.org/10.3390/ijms160922830
Brooks, G.A. (2018) The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 27, 757-785. >https://doi.org/10.1016/j.cmet.2018.03.008
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580. >https://doi.org/10.1038/s41586-019-1678-1
Rabinowitz, J.D. and Enerbäck, S. (2020) Lactate: The Ugly Duckling of Energy Metabolism. Nature Metabolism, 2, 566-571. >https://doi.org/10.1038/s42255-020-0243-4
Liberti, M.V. and Locasale, J.W. (2016) The Warburg Effect: How Does It Benefit Cancer Cells? Trends in Biochemical Sciences, 41, 211-218. >https://doi.org/10.1016/j.tibs.2015.12.001
DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007) Beyond Aerobic Glycolysis: Transformed Cells Can Engage in Glutamine Metabolism That Exceeds the Requirement for Protein and Nucleotide Synthesis. Proceedings of the National Academy of Sciences, 104, 19345-19350. >https://doi.org/10.1073/pnas.0709747104
Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 19, 163-194. >https://doi.org/10.1146/annurev-bioeng-071516-044546
Gordan, J.D., Thompson, C.B. and Simon, M.C. (2007) HIF and C-Myc: Sibling Rivals for Control of Cancer Cell Metabolism and Proliferation. Cancer Cell, 12, 108-113. >https://doi.org/10.1016/j.ccr.2007.07.006
Wang, G.L. and Semenza, G.L. (1993) General Involvement of Hypoxia-Inducible Factor 1 in Transcriptional Response to Hypoxia. Proceedings of the National Academy of Sciences, 90, 4304-4308. >https://doi.org/10.1073/pnas.90.9.4304
Wang, Z., Peng, W., Zhang, P., Yang, X. and Zhou, Q. (2021) Lactate in the Tumour Microenvironment: From Immune Modulation to Therapy. EBioMedicine, 73, Article ID: 103627. >https://doi.org/10.1016/j.ebiom.2021.103627
Halestrap, A.P. and Wilson, M.C. (2011) The Monocarboxylate Transporter Family—Role and Regulation. IUBMB Life, 64, 109-119. >https://doi.org/10.1002/iub.572
Zhang, D., Gao, J., Zhu, Z., Mao, Q., Xu, Z., Singh, P.K., et al. (2024) Lysine L-Lactylation Is the Dominant Lactylation Isomer Induced by Glycolysis. Nature Chemical Biology, 21, 91-99. >https://doi.org/10.1038/s41589-024-01680-8
He, Y., Song, T., Ning, J., Wang, Z., Yin, Z., Jiang, P., et al. (2024) Lactylation in Cancer: Mechanisms in Tumour Biology and Therapeutic Potentials. Clinical and Translational Medicine, 14, e70070. >https://doi.org/10.1002/ctm2.70070
Xie, B., Zhang, M., Li, J., Cui, J., Zhang, P., Liu, F., et al. (2024) Kat8-Catalyzed Lactylation Promotes eEF1A2-Mediated Protein Synthesis and Colorectal Carcinogenesis. Proceedings of the National Academy of Sciences, 121, e2314128121. >https://doi.org/10.1073/pnas.2314128121
Ju, J., Zhang, H., Lin, M., Yan, Z., An, L., Cao, Z., et al. (2024) The Alanyl-tRNA Synthetase AARS1 Moonlights as a Lactyltransferase to Promote YAP Signaling in Gastric Cancer. Journal of Clinical Investigation, 134, e174587. >https://doi.org/10.1172/jci174587
Wang, J., Wang, Z., Wang, Q., Li, X. and Guo, Y. (2024) Ubiquitous Protein Lactylation in Health and Diseases. Cellular & Molecular Biology Letters, 29, Article No. 23. >https://doi.org/10.1186/s11658-024-00541-5
Pavlova, N.N., Zhu, J. and Thompson, C.B. (2022) The Hallmarks of Cancer Metabolism: Still Emerging. Cell Metabolism, 34, 355-377. >https://doi.org/10.1016/j.cmet.2022.01.007
Epstein, T., Xu, L., Gillies, R.J. and Gatenby, R.A. (2014) Separation of Metabolic Supply and Demand: Aerobic Glycolysis as a Normal Physiological Response to Fluctuating Energetic Demands in the Membrane. Cancer & Metabolism, 2, Article No. 7. >https://doi.org/10.1186/2049-3002-2-7
Teng, R., Liu, Z., Tang, H., Zhang, W., Chen, Y., Xu, R., et al. (2019) HSP60 Silencing Promotes Warburg-Like Phenotypes and Switches the Mitochondrial Function from ATP Production to Biosynthesis in ccRCC Cells. Redox Biology, 24, Article ID: 101218. >https://doi.org/10.1016/j.redox.2019.101218
Li, F., Si, W., Xia, L., Yin, D., Wei, T., Tao, M., et al. (2024) Positive Feedback Regulation between Glycolysis and Histone Lactylation Drives Oncogenesis in Pancreatic Ductal Adenocarcinoma. Molecular Cancer, 23, Article No. 90. >https://doi.org/10.1186/s12943-024-02008-9
Chen, B., Deng, Y., Hong, Y., Fan, L., Zhai, X., Hu, H., et al. (2024) Metabolic Recoding of NSUN2-Mediated m(5)C Modification Promotes the Progression of Colorectal Cancer via the NSUN2/YBX1/m(5)C-ENO1 Positive Feedback Loop. Advanced Science, 11, e2309840. >https://doi.org/10.1002/advs.202309840
Zong, Z., Xie, F., Wang, S., Wu, X., Zhang, Z., Yang, B., et al. (2024) Alanyl-tRNA Synthetase, AARS1, Is a Lactate Sensor and Lactyltransferase That Lactylates P53 and Contributes to Tumorigenesis. Cell, 187, 2375-2392.e33. >https://doi.org/10.1016/j.cell.2024.04.002
Zhao, Y., Jiang, J., Zhou, P., Deng, K., Liu, Z., Yang, M., et al. (2024) H3K18 Lactylation-Mediated VCAM1 Expression Promotes Gastric Cancer Progression and Metastasis via AKT-mTOR-CXCL1 Axis. Biochemical Pharmacology, 222, Article ID: 116120. >https://doi.org/10.1016/j.bcp.2024.116120
Li, X., Yang, Y., Jiang, F., Hu, G., Wan, S., Yan, W., et al. (2024) Histone Lactylation Inhibits Rarγ Expression in Macrophages to Promote Colorectal Tumorigenesis through Activation of TRAF6-IL-6-STAT3 Signaling. Cell Reports, 43, Article ID: 113688. >https://doi.org/10.1016/j.celrep.2024.113688
Xiong, J., He, J., Zhu, J., Pan, J., Liao, W., Ye, H., et al. (2022) Lactylation-Driven Mettl3-Mediated RNA m(6)A Modification Promotes Immunosuppression of Tumor-Infiltrating Myeloid Cells. Molecular Cell, 82, 1660-1677.e10. >https://doi.org/10.1016/j.molcel.2022.02.033
Cai, Y., Feng, R., Lu, T., Chen, X., Zhou, X. and Wang, X. (2021) Novel Insights into the m(6)A-RNA Methyltransferase METTL3 in Cancer. Biomarker Research, 9, Article No. 27. >https://doi.org/10.1186/s40364-021-00278-9
Meng, Q., Sun, H., Zhang, Y., Yang, X., Hao, S., Liu, B., et al. (2024) Lactylation Stabilizes DCBLD1 Activating the Pentose Phosphate Pathway to Promote Cervical Cancer Progression. Journal of Experimental & Clinical Cancer Research, 43, Article No. 36. >https://doi.org/10.1186/s13046-024-02943-x
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. >https://doi.org/10.1016/j.cell.2011.02.013
Bao, C., Ma, Q., Ying, X., Wang, F., Hou, Y., Wang, D., et al. (2025) Histone Lactylation in Macrophage Biology and Disease: From Plasticity Regulation to Therapeutic Implications. eBioMedicine, 111, Article ID: 105502. >https://doi.org/10.1016/j.ebiom.2024.105502
Qiao, Q., Hu, S. and Wang, X. (2024) The Regulatory Roles and Clinical Significance of Glycolysis in Tumor. Cancer Communications, 44, 761-786. >https://doi.org/10.1002/cac2.12549
Wang, T., Ye, Z., Li, Z., Jing, D., Fan, G., Liu, M., et al. (2023) Lactate‐Induced Protein Lactylation: A Bridge between Epigenetics and Metabolic Reprogramming in Cancer. Cell Proliferation, 56, e13478. >https://doi.org/10.1111/cpr.13478
Zhang, L. and Li, S. (2020) Lactic Acid Promotes Macrophage Polarization through Mct-Hif1α Signaling in Gastric Cancer. Experimental Cell Research, 388, Article ID: 111846. >https://doi.org/10.1016/j.yexcr.2020.111846
Sun, J., Feng, Q., He, Y., Wang, M. and Wu, Y. (2024) Lactate Activates CCL18 Expression via H3K18 Lactylation in Macrophages to Promote Tumorigenesis of Ovarian Cancer. Acta Biochimica et Biophysica Sinica, 56, 1373-1386. >https://doi.org/10.3724/abbs.2024111
Li, M., Sun, P., Tu, B., Deng, G., Li, D. and He, W. (2024) Hypoxia Conduces the Glioma Progression by Inducing M2 Macrophage Polarization via Elevating TNFSF9 Level in a Histone-Lactylation-Dependent Manner. American Journal of Physiology-Cell Physiology, 327, C487-C504. >https://doi.org/10.1152/ajpcell.00124.2024
Cai, J., Song, L., Zhang, F., Wu, S., Zhu, G., Zhang, P., et al. (2024) Targeting SRSF10 Might Inhibit M2 Macrophage Polarization and Potentiate Anti‐PD‐1 Therapy in Hepatocellular Carcinoma. Cancer Communications, 44, 1231-1260. >https://doi.org/10.1002/cac2.12607
Huang, C., Xue, L., Lin, X., Shen, Y. and Wang, X. (2024) Histone Lactylation-Driven GPD2 Mediates M2 Macrophage Polarization to Promote Malignant Transformation of Cervical Cancer Progression. DNA and Cell Biology, 43, 605-618. >https://doi.org/10.1089/dna.2024.0122
Sen, D.R., Kaminski, J., Barnitz, R.A., Kurachi, M., Gerdemann, U., Yates, K.B., et al. (2016) The Epigenetic Landscape of T Cell Exhaustion. Science, 354, 1165-1169. >https://doi.org/10.1126/science.aae0491
Grist, J.T., Jarvis, L.B., Georgieva, Z., Thompson, S., Kaur Sandhu, H., Burling, K., et al. (2018) Extracellular Lactate: A Novel Measure of T Cell Proliferation. The Journal of Immunology, 200, 1220-1226. >https://doi.org/10.4049/jimmunol.1700886
Klein Geltink, R.I., Kyle, R.L. and Pearce, E.L. (2018) Unraveling the Complex Interplay between T Cell Metabolism and Function. Annual Review of Immunology, 36, 461-488. >https://doi.org/10.1146/annurev-immunol-042617-053019
Raychaudhuri, D., Singh, P., Chakraborty, B., Hennessey, M., Tannir, A.J., Byregowda, S., et al. (2024) Histone Lactylation Drives CD8+ T Cell Metabolism and Function. Nature Immunology, 25, 2140-2151. >https://doi.org/10.1038/s41590-024-01985-9
Zeng, Y., Huang, Y., Tan, Q., Peng, L., Wang, J., Tong, F., et al. (2024) Influence of Lactate in Resistance to Anti‑PD‑1/ PD‑L1 Therapy: Mechanisms and Clinical Applications (Review). Molecular Medicine Reports, 31, Article No. 48. >https://doi.org/10.3892/mmr.2024.13413
Yao, J., Lin, X., Zhang, X., Xie, M., Ma, X., Bao, X., et al. (2024) Predictive Biomarkers for Immune Checkpoint Inhibitors Therapy in Lung Cancer. Human Vaccines & Immunotherapeutics, 20, Article ID: 2406063. >https://doi.org/10.1080/21645515.2024.2406063
Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. >https://doi.org/10.1038/s41575-019-0126-x
Tong, H., Jiang, Z., Song, L., Tan, K., Yin, X., He, C., et al. (2024) Dual Impacts of Serine/Glycine-Free Diet in Enhancing Antitumor Immunity and Promoting Evasion via PD-L1 Lactylation. Cell Metabolism, 36, 2493-2510.e9. >https://doi.org/10.1016/j.cmet.2024.10.019
Hu, X., Huang, Z. and Li, L. (2024) LDHB Mediates Histone Lactylation to Activate PD-L1 and Promote Ovarian Cancer Immune Escape. Cancer Investigation, 43, 70-79. >https://doi.org/10.1080/07357907.2024.2430283
Zhang, C., Zhou, L., Zhang, M., Du, Y., Li, C., Ren, H., et al. (2024) H3K18 Lactylation Potentiates Immune Escape of Non-Small Cell Lung Cancer. Cancer Research, 84, 3589-3601. >https://doi.org/10.1158/0008-5472.can-23-3513
Zhu, X., Zhu, H., Luo, H., Zhang, W., Shen, Z. and Hu, X. (2016) Molecular Mechanisms of Cisplatin Resistance in Cervical Cancer. Drug Design, Development and Therapy, 10, 1885-1895. >https://doi.org/10.2147/dddt.s106412
Li, J., Chen, Z., Pan, Y. and Zeng, L. (2025) The Important Role of Lactylation in Regulating DNA Damage Repair and Tumor Chemotherapy Resistance. Drug Resistance Updates, 78, Article ID: 101148. >https://doi.org/10.1016/j.drup.2024.101148
Chen, H., Li, Y., Li, H., Chen, X., Fu, H., Mao, D., et al. (2024) NBS1 Lactylation Is Required for Efficient DNA Repair and Chemotherapy Resistance. Nature, 631, 663-669. >https://doi.org/10.1038/s41586-024-07620-9
Li, G., Wang, D., Zhai, Y., Pan, C., Zhang, J., Wang, C., et al. (2024) Glycometabolic Reprogramming-Induced XRCC1 Lactylation Confers Therapeutic Resistance in Aldh1a3-Overexpressing Glioblastoma. Cell Metabolism, 36, 1696-1710.e10. >https://doi.org/10.1016/j.cmet.2024.07.011
Yue, Q., Wang, Z., Shen, Y., Lan, Y., Zhong, X., Luo, X., et al. (2024) Histone H3K9 Lactylation Confers Temozolomide Resistance in Glioblastoma via LUC7L2‐Mediated MLH1 Intron Retention. Advanced Science, 11, e2309290. >https://doi.org/10.1002/advs.202309290
Li, W., Zhou, C., Yu, L., Hou, Z., Liu, H., Kong, L., et al. (2023) Tumor-Derived Lactate Promotes Resistance to Bevacizumab Treatment by Facilitating Autophagy Enhancer Protein RUBCNL Expression through Histone H3 Lysine 18 Lactylation (h3k18la) in Colorectal Cancer. Autophagy, 20, 114-130. >https://doi.org/10.1080/15548627.2023.2249762
Chen, J., Zhao, D., Wang, Y., Liu, M., Zhang, Y., Feng, T., et al. (2024) Lactylated Apolipoprotein C‐II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis (Adv. Sci. 38/2024). Advanced Science, 11, e2406333. >https://doi.org/10.1002/advs.202470226
Lu, Y., Zhu, J., Zhang, Y., Li, W., Xiong, Y., Fan, Y., et al. (2024) Lactylation‐Driven IGF2BP3‐Mediated Serine Metabolism Reprogramming and RNA M6a—Modification Promotes Lenvatinib Resistance in HCC. Advanced Science, 11, e2401399. >https://doi.org/10.1002/advs.202401399