acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2025.1541026 acm-111222 Articles 医药卫生 乳酸化修饰在肿瘤发展与治疗中的 调控机制研究进展
Research Progress in the Regulatory Mechanisms of Lactylation in Tumor Development and Therapy
郝庆博 解维林 山东第一医科大学(山东省医学科学院)药学院,山东 济南 31 03 2025 15 04 1037 1045 8 3 :2025 31 3 :2025 31 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 长期以来,乳酸被认为是缺氧条件下通过糖酵解产生的代谢废物。然而,随着Warburg效应的发现,研究者认识到,即使在有氧条件下,肿瘤细胞依然能通过糖酵解途径产生乳酸。近年来的研究进一步揭示,乳酸不仅在肿瘤代谢重编程中发挥关键作用,还参与了一种新型的表观遗传修饰——乳酸化。乳酸化修饰对基因转录、蛋白质稳定性、代谢重编程、免疫逃逸及耐药性等肿瘤生物学特性产生深远影响。对乳酸化修饰机制的进一步探索,不仅加深了我们对肿瘤发生发展机制的理解,也为癌症治疗策略提供了新的思路。因此,本文总结了乳酸化在癌症研究中的最新进展,深入解析其在肿瘤生物学功能中的作用机制,并探讨其对癌症治疗的应用价值。
Traditionally, lactate was considered as a metabolic waste product produced through glycolysis under hypoxic conditions. However, with the discovery of the Warburg effect, it has become evident that tumor cells can produce lactate via the glycolytic pathway even in the presence of oxygen. Recent studies have revealed that lactate not only plays a key role in tumor metabolic reprogramming, but also regulates a novel epigenetic modification known as lactylation. This modification has profound impact on tumor biological properties such as gene transcription, protein stability, metabolic reprogramming, immune escape and drug resistance. With further exploration of the mechanisms of lactylation modification, our understanding of tumorigenesis and progression has been significantly expanded, which provides new ideas for cancer therapeutic strategies. Therefore, this paper summarizes the recent advances of lactylation research in cancer, elucidates its functional mechanisms in tumor biology, and explores its potential implications for therapeutic strategies.
乳酸,乳酸化修饰,代谢重编程,免疫逃逸,耐药
Lactate Acid
Lactylation Modification Metabolic Reprogramming Immune Escape Drug Resistance
1. 引言

乳酸最早于1780年由Karl Wilhelm Scheele从酸牛奶中发现并成功提纯 [1] 。长期以来,乳酸被认为是缺氧条件下糖酵解的代谢废物。然而,20世纪20年代,Warburg团队通过一项开创性研究发现:即使在充足氧气的环境中,肿瘤细胞仍然以远高于正常细胞的速率消耗葡萄糖,并且葡萄糖更频繁地转化为丙酮酸,进而产生大量乳酸。这一现象被称为有氧糖酵解,即Warburg效应 [2] 。随着这一重大发现和乳酸穿梭概念的提出,乳酸的生物学功能得到了重新评估。乳酸不再是代谢废物,可以作为能量来源以及信号分子参与调控免疫和代谢过程 [3] [4] 。基于此,乳酸的研究得到了广泛关注,尤其是乳酸化修饰这一新型表观遗传修饰在近年的研究逐渐成为热点 [5] 。作为一种蛋白质翻译后修饰,乳酸化不仅能够直接调节基因转录,还通过改变染色质的构象来影响基因表达及蛋白质的功能。此外,乳酸化与巨噬细胞极化、线粒体功能以及T细胞激活等多种细胞过程密切相关,进而调控肿瘤进展。本文旨在总结乳酸化修饰在肿瘤中的分子机制与最新研究研究进展,并进一步探讨了其在肿瘤治疗中的潜在应用。

2. 乳酸的生成

糖代谢是细胞中非常重要的代谢途径。葡萄糖首先在己糖激酶、磷酸己糖异构酶和6-磷酸果糖激酶的作用下生成1,6-二磷酸果糖,随后转化为3-磷酸甘油醛,每分子的3-磷酸甘油醛转化为丙酮酸。在无氧条件下,丙酮酸最终转化为乳酸,而不是在线粒体中进行氧化磷酸化(OXPHOS) [6] [7] 。然而,在肿瘤细胞中,即使是在有氧环境下,葡萄糖仍然能够通过有氧糖酵解途径生成乳酸。肿瘤细胞的能量获取更主要依赖于更频繁的有氧糖酵解,而非通过OXPHOS [7] 。此外,谷氨酰胺分解代谢也是肿瘤细胞中乳酸生成的一个重要来源 [8] 。当MYC基因受到调控时,谷氨酰胺通过氨基酸转运蛋白ASCT2/SLC1A5的协助跨膜进入细胞。在线粒体内,谷氨酰胺酶催化谷氨酰胺脱氨基反应,生成谷氨酸,后者进一步通过谷氨酸脱氢酶转化为α-酮戊二酸,进入TCA。谷氨酰胺为草酰乙酸的生成提供了碳源,草酰乙酸则进一步转化为苹果酸,转运到细胞质中,最终生成丙酮酸,为乳酸的生成提供前体 [3] [9] 。乳酸的生成受到多因素的调控。在肿瘤微环境(TME)中,HIF-1α和c-Myc被激活,维持着癌细胞的快速糖酵解 [10] 。正是由于HIF-1α和c-Myc可以促进糖酵解过程中三种限速酶的其中两种,并且磷酸化丙酮酸脱氢酶,抑制丙酮酸在线粒体中的代谢以及促进乳酸脱氢酶A (LDHA)的表达来产生更多的乳酸 [11] [12] 。产生的过量乳酸通过HIF-1α和c-Myc介导的单羧酸转运蛋白1和4 (MCT1/MCT4)转运至细胞外来避免细胞内环境的酸化 [13] 。过量的乳酸由此参与各个生物学过程。

3. 乳酸化修饰的发现

2019年,赵英明团队通过液质联用技术对比合成肽段与体内衍生肽,并合成抗体进行验证,团队首次确认了组蛋白乳酸化修饰的存在,并指出乳酸化修饰是乳酸分子通过共价结合附着于肽链上,从而改变肽的功能和稳定性的过程 [5]

鉴于肿瘤细胞中Warburg效应的发生伴随大量乳酸的生成,乳酸化的发现为我们提供了深入理解Warburg效应的新视角。乳酸存在两种异构体形式:L-乳酸和D-乳酸,它们分别影响组蛋白乳酸化(主要由L-乳酸介导)和非组蛋白乳酸化 [5] [14] [15] 。作为一种表观遗传修饰,乳酸化同样需要“写入”和“擦除”酶的参与,通过酶促反应将乳酸基团共价修饰到靶蛋白上。赵英明团队在乳酸化研究中发现,P300作为组蛋白乙酰转移酶,发挥着乳酸化“写入”酶的作用 [5] 。随后的研究中发现,KAT8以及丙氨酰-tRNA合成酶均作为“写入”酶参与乳酸化修饰 [16] [17] 。这些关键蛋白的发现为乳酸化研究的深入推进奠定了基础。随着乳酸化研究的不断发展,越来越多的研究揭示,在不同类型的癌症中可以检测到数百甚至数千个乳酸化修饰位点,尤其是组蛋白乳酸化的位点主要集中在H3和H4组蛋白上。这些乳酸化修饰位点广泛分布于全身,影响转录调控、蛋白质合成及多种细胞生物过程,进而调控免疫反应、线粒体代谢、血管生成和神经调节等重要生物过程 [18] [19] 。然而目前非组蛋白乳酸化的研究比较欠缺,还需进一步探索。

4. 乳酸化修饰与糖酵解重编程

糖酵解重编程是肿瘤细胞在充分氧气供应下仍然优先通过葡萄糖代谢以满足其快速增殖和生存需求的一种代谢适应方式 [2] 。作为研究较为深入的代谢重编程形式,糖酵解重编程已成为肿瘤细胞代谢的重要特征之一。它不仅通过产生大量中间代谢物和ATP为肿瘤细胞的增殖提供所需的前体和充足的能量 [20] [21] ,还通过促进乳酸的产生与释放,塑造酸性微环境,从而抑制免疫细胞的生长。此外,积累的乳酸通过诱导蛋白质乳酸化修饰,促进如LDHA等糖酵解酶的活性,加速肿瘤细胞内的糖酵解重编程。研究表明,在胰腺导管腺癌(PDAC)中,糖酵解抑制剂或LDHA敲低均可显著降低乳酸化水平,这一效果与P300的抑制相似 [22] 。进一步研究发现,H3K18乳酸化在TTK和BUB1B基因启动子区域的富集并影响了细胞周期进程和肿瘤发生。对其敲低可抑制P300的表达,且TTK的敲低抑制了LDHA Y239位点的磷酸化,影响乳酸积累及乳酸化水平,证明糖酵解与乳酸化之间存在正反馈调节 [22] 。胃癌中糖酵解重编程的增加导致了乳酸的积累,而丙氨酰-tRNA合成酶1(AARS1)作为新型乳酸感受器,感应乳酸增加并促进乳酸与Hippo信号通路中的YAP和TEAD蛋白互作,进而诱导YAP K90位点和TEAD1 K108位点的乳酸化,激活下游基因的表达 [17] 。在结肠癌中,m5C甲基转移酶2 (NSUN2)通过促进糖酵解代谢重编程,增强乳酸的积累,继而乳酸又通过组蛋白H3K18的乳酸化修饰激活NSUN2的转录,并直接诱导赖氨酸K356位点的乳酸化,从而促进靶RNA的捕获和ENO1 mRNA的m5C修饰,进一步加深了代谢重编程和表观遗传重塑之间的联系 [23] 。这些研究结果表明,乳酸化与糖酵解重编程在癌细胞中的相互作用对肿瘤的发生和发展具有重要影响,这一发现有助于深化我们对乳酸、乳酸化及糖酵解重编程三者之间紧密联系的理解。

5. 乳酸化影响肿瘤进展 5.1. 乳酸化影响基因转录和蛋白质功能

组蛋白乳酸化的发生可以改变染色体结构状态以及影响转录延伸过程,另外乳酸化也可以直接作用于转录因子,改变其构象,影响其与DNA的结合,调节基因转录。正如最近研究中,乳酸传感器AARS1能够催化p53(肿瘤抑制因子)在其DNA结合域的K120和K139位点的乳酸化,阻碍与p53响应元件(p53RE-DNA)的结合和液–液相分离(LLPS),并且p53乙酰化位点与这两个位点重合也被竞争性抑制,进而阻止了p53转录激活和抗肿瘤功能 [24] 。在胃癌中,H3K18位点的乳酸化促进血管细胞黏附因子(VCAM1)的转录并通过AKT-mTOR通路促进CXCL1的表达,加速了间充质细胞的募集并影响了胃癌的进程 [25] 。在结肠癌中,RARγ与肿瘤坏死因子受体相关因子6(TRAF6)相互作用抑制NF-κB通路的信号转导和IL-6的产生。而H3K18位点的乳酸化则抑制了RARγ的转录,导致IL-6水平的升高,并促进了STAT3信号通路的激活 [26] 。此外,乳酸化还参与调控RNA修饰。N6-甲基腺苷(m6A)作为一种广泛的内部RNA修饰,受到RNA甲基转移酶样3 (METTL3)的调节,研究表明乳酸化可以发生在METTL3锌指结构域(ZFD)的K281和K345位点促进其表达,进而加强METTL3与mRNA的结合和m6A修饰的发生。METTL3主要在Jak1 mRNA上进行m6A修饰,通过m6A阅读蛋白YTHDF1增强Jak1 mRNA的翻译效率,从而促进JAK1蛋白的表达和STAT3的磷酸化,驱动肿瘤细胞的免疫抑制 [27] [28]

乳酸化是发生于蛋白质氨基酸残基上的翻译后修饰,通过改变蛋白质的电荷、疏水性及其三维结构,进而对蛋白质的功能和稳定性产生影响。通过质谱分析(LC-MS/MS)和分子对接技术,在宫颈癌细胞中发现,K172A位点是DCBLD1蛋白(含有Discoidin、CUB和LCCL结构域的I型蛋白)的主要乳酸化位点,乳酸化能够促进DCBLD1的表达并激活磷酸戊糖途径(PPP)。乳酸化通过抑制DCBLD1的泛素化过程,减少了其被蛋白酶体识别并降解的可能性,从而增强了DCBLD1的稳定性 [29] 。系列研究表明,乳酸化能够通过改变转录因子和蛋白质构象,调控基因转录和蛋白质功能和稳定性,进而影响肿瘤进展,且有望为肿瘤治疗提供了潜在靶点。但是,乳酸化修饰如何深入调控基因转录和蛋白质功能的详细机制仍亟需进一步深入研究。

5.2. 乳酸化影响免疫逃逸

免疫逃逸作为肿瘤细胞的新兴标志,通过多种机制规避、抑制免疫介导的靶向和杀伤,使得肿瘤细胞得以在体内继续生长和增殖 [30] 。乳酸在肿瘤细胞中的积累导致酸性微环境的形成,抑制免疫细胞功能,同时通过乳酸化修饰改变免疫细胞的表观遗传状态,推动肿瘤免疫逃逸的发展 [31] - [33] 。作为肿瘤组织中最丰富的免疫细胞,巨噬细胞表现出显著的表型可塑性 [31] 。肿瘤微环境中的乳酸通过乳酸转运蛋白(MCT)和缺氧诱导因子1α (HIF1α)信号通路促进巨噬细胞向M2型极化 [34] 。已有研究证明,乳酸Gpr132受体通过感应卵巢癌微环境中的乳酸,诱导巨噬细胞向M2型极化,并使得CCL18的H3K18发生乳酸化修饰并促进其转录激活,进而抑制T细胞功能或招募免疫抑制性细胞,从而促进卵巢癌的增殖和迁移。结合已有研究CCL18促进免疫逃逸的机制可能是通过调节磷脂酰肌醇3-激酶/蛋白激酶B (PI3K/Akt)通路发挥作用 [35] 。同样,肿瘤坏死因子超家族成员9 (TNFSF9)通过MCT-1/H3K18La信号传导诱导巨噬细胞向M2极化,抑制局部免疫,进而促进神经胶质瘤的免疫逃逸 [36] 。在肝细胞癌中,丝氨酸和精氨酸剪接因子10 (SRSF10)通过与MYB相互作用,促进其RNA稳定性,并上调糖酵解中的关键酶。SRSF10的乳酸化进一步促进其表达,并推动巨噬细胞向M2型极化并分泌IL-10、TGF-β等抑制性细胞因子,抑制CD8+ T细胞的富集,进一步避免了免疫细胞监视。SRSF10高表达与免疫治疗抵抗相关,而抑制SRSF10可增强程序性细胞死亡1 (PD-1)单抗疗效,表明SRSF10可能通过上调PD-L1或增强免疫抑制信号间接抑制T细胞活性 [37] 。此外,组蛋白乳酸化驱动的GPD2也被证明在这一过程中的有效作用 [38]

T细胞也是免疫系统的关键组成部分。在肿瘤微环境中,由于有氧糖酵解的发生,乳酸水平升高,维持了低pH环境,进而抑制T细胞的增殖能力和抗肿瘤活性 [12] 。这一过程导致T细胞进入功能失调状态,即T细胞耗竭 [39] 。在静息状态下,T细胞的能量获取主要依赖于线粒体代谢,而活化的CD8+ T细胞则更依赖于有氧糖酵解,导致乳酸积累,从而进一步抑制CD8+ T细胞的增殖和存活 [40] [41] 。因此,理解乳酸与T细胞之间的复杂关系对于揭示免疫逃逸机制至关重要。乳酸化的发现为进一步探索这一关系提供了新的视角。最近的一项研究表明,在CD8+ T细胞中,H3K18和H3K9两个位点的乳酸化修饰显著富集,这些修饰通过增强启动子调控Stat1、Cd28、Tcf7、Ccr7和Batf3等基因的表达,进而影响T细胞的激活和功能。此外,乳酸化还参与调节T细胞的糖酵解代谢途径,协同参与调控肿瘤的免疫逃逸 [42] 。免疫检查点抑制剂(ICI)治疗显著改变了T细胞的抗肿瘤免疫效能 [42] 。在ICI为主的免疫疗法中,PD-1及其配体PD-L1受到广泛关注 [43] - [45] 。多项研究已证实PD-L1的乳酸化是其表达上调的潜在机制之一 [46] [47] 。在非小细胞肺癌中,H3K18的乳酸化促进孔膜蛋白121 (POM121)的转录激活,增强MYC的核转运,进而调节PD-L1的上调,传递抑制信号,降低T细胞活性甚至导致其凋亡,进一步促进肿瘤细胞的免疫逃逸 [48] 。而免疫检查点抑制剂能有效阻断PD-1/PD-L1信号通路,恢复CD8+ T细胞的免疫杀伤功能 [46]

系列研究表明,组蛋白乳酸化不仅可以调节巨噬细胞的极化以及T细胞活性等免疫细胞功能,还能影响免疫检查点蛋白以及固有免疫蛋白等,通过多种方式影响着肿瘤免疫逃逸,这也为肿瘤靶向治疗提供了新视角。尽管乳酸化在免疫细胞中的作用已有诸多研究,但由于肿瘤微环境的多元复杂性,各种调节因素的动态相互作用使得难以通过单一机制阐明,仍需进一步探讨免疫细胞在肿瘤微环境中的动态变化,以获得更为准确的理解。

5.3. 乳酸化影响耐药性

肿瘤的治疗方法已有多种,包括传统的化疗、放疗、靶向治疗以及新兴的免疫疗法,但肿瘤耐药性仍然是治疗过程中面临的重大挑战。耐药性机制受到多种因素的调控,如药物摄取减少、外流增加、DNA损伤修复、信号通路改变以及凋亡抑制等,这些因素在肿瘤耐药性中发挥着重要作用 [49] [50] 。乳酸化的发现为研究耐药机制提供了新的视角,然而,由于耐药机制的多样性,乳酸化与耐药性之间的关系依然复杂。DNA损伤修复一直被认为是耐药性的重要影响因素,近年来的研究揭示了乳酸化在其中的关键作用。何等人研究发现,NBS1在K388位点的乳酸化是癌症化疗耐药的关键机制,并且揭示了TIP60作为NBS1乳酸化的“写入”酶,提出通过耗竭LDHA或临床药物stiripentol抑制乳酸化修饰,进而降低DNA损伤修复,克服化疗耐药性 [51] 。在胶质母细胞瘤(GBM)中,ALDH1A3的过表达促进了XRCC1 (DNA修复蛋白)的乳酸化修饰,进一步增强了DNA损伤修复能力,导致耐药性产生 [52] 。此外,GBM中LUC7L2的H3K9位点乳酸化通过介导MLH1的乳酸化,导致替莫唑胺(TMZ)的耐药性 [53] 。这些研究表明乳酸化在DNA损伤修复及耐药性发展中具有关键作用。除了DNA修复,乳酸化还能够影响自噬、脂肪分解以及m6A甲基化修饰等途径,从而促进癌症的耐药性 [54] - [56] 。因此,乳酸化不仅在化疗耐药中发挥促进作用,还可能在免疫治疗耐药中起到类似作用,这表明乳酸作为克服耐药性的关键靶标具有重要的治疗潜力。抑制乳酸化可能成为一种新的癌症治疗策略。然而,乳酸化在促进耐药中的机制尚未完全揭示,仍需进一步探讨,并通过临床验证以确认其在治疗中的实际应用价值。

6. 总结与展望

乳酸作为代谢产物的角色经历了“变废为宝”的过程。乳酸不仅可以作为能量来源,还可以充当信号分子调节免疫反应和代谢等生物学过程。近年来的研究表明,乳酸积累能够诱导乳酸化修饰的发生,作为一种新型表观遗传修饰,乳酸化在肿瘤细胞中发挥着深远影响,包括基因转录、蛋白质稳定性、代谢重编程及免疫逃逸等多方面的调控。与此同时,乳酸化与癌症治疗中的耐药性密切相关,成为研究肿瘤耐药机制的重要方向。经过数年的深入研究,乳酸化水平的变化已被确立为癌症早期诊断和检测的潜在生物标志物。然而,作为一种新发现的蛋白质翻译后修饰,乳酸化在基因表观遗传调控中的作用仍具有广泛的研究潜力,其调控机制的复杂性也要求更多的探索。尽管乳酸化在肿瘤进展中的作用已逐渐显现,但作为临床治疗的新靶点,肿瘤微环境的复杂性以及临床转化等都是巨大难题。在临床实践中,针对乳酸化的特异性靶向治疗,一方面基因编辑技术或使用抑制剂等手段靶向LDHA或MCT1/4等关键靶点,从而有效地抑制乳酸的生成和转运;另一方面它们也可以作用于乳酸化的修饰酶,包括“写入”酶和“去除”酶,以及相关的效应因子,进而特异性地阻断乳酸化的产生。然而,靶向乳酸化治疗仍然存在一些潜在的安全风险。干扰乳酸的产生过程可能会导致机体的能量代谢出现紊乱;而对效应因子和修饰酶的干预则可能会非特异性地影响其他信号通路。此外,乳酸化修饰在调控肿瘤细胞免疫逃逸方面发挥着重要作用,对其的抑制程度也会对机体的免疫平衡产生影响。正因如此,乳酸化的发展依然面临着巨大的挑战。因此,亟需进一步研究乳酸化修饰的分子机制,深入探讨其对肿瘤进展的影响。通过总结当前乳酸化修饰与肿瘤进展的研究成果,希望能够为癌症的发病机制提供更为清晰的理解,并为未来癌症的靶向治疗提供理论依据。

基金项目

山东第一医科大学学术提升计划(2019LJ003)。

利益冲突

所有作者均声明不存在利益冲突。

NOTES

*通讯作者。

References Ferguson, B.S., Rogatzki, M.J., Goodwin, M.L., Kane, D.A., Rightmire, Z. and Gladden, L.B. (2018) Lactate Metabolism: Historical Context, Prior Misinterpretations, and Current Understanding. European Journal of Applied Physiology, 118, 691-728. >https://doi.org/10.1007/s00421-017-3795-6 Warburg, O. (1925) The Metabolism of Carcinoma Cells. The Journal of Cancer Research, 9, 148-163. >https://doi.org/10.1158/jcr.1925.148 Chen, L. and Cui, H. (2015) Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. International Journal of Molecular Sciences, 16, 22830-22855. >https://doi.org/10.3390/ijms160922830 Brooks, G.A. (2018) The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 27, 757-785. >https://doi.org/10.1016/j.cmet.2018.03.008 Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580. >https://doi.org/10.1038/s41586-019-1678-1 Rabinowitz, J.D. and Enerbäck, S. (2020) Lactate: The Ugly Duckling of Energy Metabolism. Nature Metabolism, 2, 566-571. >https://doi.org/10.1038/s42255-020-0243-4 Liberti, M.V. and Locasale, J.W. (2016) The Warburg Effect: How Does It Benefit Cancer Cells? Trends in Biochemical Sciences, 41, 211-218. >https://doi.org/10.1016/j.tibs.2015.12.001 DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007) Beyond Aerobic Glycolysis: Transformed Cells Can Engage in Glutamine Metabolism That Exceeds the Requirement for Protein and Nucleotide Synthesis. Proceedings of the National Academy of Sciences, 104, 19345-19350. >https://doi.org/10.1073/pnas.0709747104 Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 19, 163-194. >https://doi.org/10.1146/annurev-bioeng-071516-044546 Gordan, J.D., Thompson, C.B. and Simon, M.C. (2007) HIF and C-Myc: Sibling Rivals for Control of Cancer Cell Metabolism and Proliferation. Cancer Cell, 12, 108-113. >https://doi.org/10.1016/j.ccr.2007.07.006 Wang, G.L. and Semenza, G.L. (1993) General Involvement of Hypoxia-Inducible Factor 1 in Transcriptional Response to Hypoxia. Proceedings of the National Academy of Sciences, 90, 4304-4308. >https://doi.org/10.1073/pnas.90.9.4304 Wang, Z., Peng, W., Zhang, P., Yang, X. and Zhou, Q. (2021) Lactate in the Tumour Microenvironment: From Immune Modulation to Therapy. EBioMedicine, 73, Article ID: 103627. >https://doi.org/10.1016/j.ebiom.2021.103627 Halestrap, A.P. and Wilson, M.C. (2011) The Monocarboxylate Transporter Family—Role and Regulation. IUBMB Life, 64, 109-119. >https://doi.org/10.1002/iub.572 Zhang, D., Gao, J., Zhu, Z., Mao, Q., Xu, Z., Singh, P.K., et al. (2024) Lysine L-Lactylation Is the Dominant Lactylation Isomer Induced by Glycolysis. Nature Chemical Biology, 21, 91-99. >https://doi.org/10.1038/s41589-024-01680-8 He, Y., Song, T., Ning, J., Wang, Z., Yin, Z., Jiang, P., et al. (2024) Lactylation in Cancer: Mechanisms in Tumour Biology and Therapeutic Potentials. Clinical and Translational Medicine, 14, e70070. >https://doi.org/10.1002/ctm2.70070 Xie, B., Zhang, M., Li, J., Cui, J., Zhang, P., Liu, F., et al. (2024) Kat8-Catalyzed Lactylation Promotes eEF1A2-Mediated Protein Synthesis and Colorectal Carcinogenesis. Proceedings of the National Academy of Sciences, 121, e2314128121. >https://doi.org/10.1073/pnas.2314128121 Ju, J., Zhang, H., Lin, M., Yan, Z., An, L., Cao, Z., et al. (2024) The Alanyl-tRNA Synthetase AARS1 Moonlights as a Lactyltransferase to Promote YAP Signaling in Gastric Cancer. Journal of Clinical Investigation, 134, e174587. >https://doi.org/10.1172/jci174587 Wang, J., Wang, Z., Wang, Q., Li, X. and Guo, Y. (2024) Ubiquitous Protein Lactylation in Health and Diseases. Cellular & Molecular Biology Letters, 29, Article No. 23. >https://doi.org/10.1186/s11658-024-00541-5 Pavlova, N.N., Zhu, J. and Thompson, C.B. (2022) The Hallmarks of Cancer Metabolism: Still Emerging. Cell Metabolism, 34, 355-377. >https://doi.org/10.1016/j.cmet.2022.01.007 Epstein, T., Xu, L., Gillies, R.J. and Gatenby, R.A. (2014) Separation of Metabolic Supply and Demand: Aerobic Glycolysis as a Normal Physiological Response to Fluctuating Energetic Demands in the Membrane. Cancer & Metabolism, 2, Article No. 7. >https://doi.org/10.1186/2049-3002-2-7 Teng, R., Liu, Z., Tang, H., Zhang, W., Chen, Y., Xu, R., et al. (2019) HSP60 Silencing Promotes Warburg-Like Phenotypes and Switches the Mitochondrial Function from ATP Production to Biosynthesis in ccRCC Cells. Redox Biology, 24, Article ID: 101218. >https://doi.org/10.1016/j.redox.2019.101218 Li, F., Si, W., Xia, L., Yin, D., Wei, T., Tao, M., et al. (2024) Positive Feedback Regulation between Glycolysis and Histone Lactylation Drives Oncogenesis in Pancreatic Ductal Adenocarcinoma. Molecular Cancer, 23, Article No. 90. >https://doi.org/10.1186/s12943-024-02008-9 Chen, B., Deng, Y., Hong, Y., Fan, L., Zhai, X., Hu, H., et al. (2024) Metabolic Recoding of NSUN2-Mediated m(5)C Modification Promotes the Progression of Colorectal Cancer via the NSUN2/YBX1/m(5)C-ENO1 Positive Feedback Loop. Advanced Science, 11, e2309840. >https://doi.org/10.1002/advs.202309840 Zong, Z., Xie, F., Wang, S., Wu, X., Zhang, Z., Yang, B., et al. (2024) Alanyl-tRNA Synthetase, AARS1, Is a Lactate Sensor and Lactyltransferase That Lactylates P53 and Contributes to Tumorigenesis. Cell, 187, 2375-2392.e33. >https://doi.org/10.1016/j.cell.2024.04.002 Zhao, Y., Jiang, J., Zhou, P., Deng, K., Liu, Z., Yang, M., et al. (2024) H3K18 Lactylation-Mediated VCAM1 Expression Promotes Gastric Cancer Progression and Metastasis via AKT-mTOR-CXCL1 Axis. Biochemical Pharmacology, 222, Article ID: 116120. >https://doi.org/10.1016/j.bcp.2024.116120 Li, X., Yang, Y., Jiang, F., Hu, G., Wan, S., Yan, W., et al. (2024) Histone Lactylation Inhibits Rarγ Expression in Macrophages to Promote Colorectal Tumorigenesis through Activation of TRAF6-IL-6-STAT3 Signaling. Cell Reports, 43, Article ID: 113688. >https://doi.org/10.1016/j.celrep.2024.113688 Xiong, J., He, J., Zhu, J., Pan, J., Liao, W., Ye, H., et al. (2022) Lactylation-Driven Mettl3-Mediated RNA m(6)A Modification Promotes Immunosuppression of Tumor-Infiltrating Myeloid Cells. Molecular Cell, 82, 1660-1677.e10. >https://doi.org/10.1016/j.molcel.2022.02.033 Cai, Y., Feng, R., Lu, T., Chen, X., Zhou, X. and Wang, X. (2021) Novel Insights into the m(6)A-RNA Methyltransferase METTL3 in Cancer. Biomarker Research, 9, Article No. 27. >https://doi.org/10.1186/s40364-021-00278-9 Meng, Q., Sun, H., Zhang, Y., Yang, X., Hao, S., Liu, B., et al. (2024) Lactylation Stabilizes DCBLD1 Activating the Pentose Phosphate Pathway to Promote Cervical Cancer Progression. Journal of Experimental & Clinical Cancer Research, 43, Article No. 36. >https://doi.org/10.1186/s13046-024-02943-x Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. >https://doi.org/10.1016/j.cell.2011.02.013 Bao, C., Ma, Q., Ying, X., Wang, F., Hou, Y., Wang, D., et al. (2025) Histone Lactylation in Macrophage Biology and Disease: From Plasticity Regulation to Therapeutic Implications. eBioMedicine, 111, Article ID: 105502. >https://doi.org/10.1016/j.ebiom.2024.105502 Qiao, Q., Hu, S. and Wang, X. (2024) The Regulatory Roles and Clinical Significance of Glycolysis in Tumor. Cancer Communications, 44, 761-786. >https://doi.org/10.1002/cac2.12549 Wang, T., Ye, Z., Li, Z., Jing, D., Fan, G., Liu, M., et al. (2023) Lactate‐Induced Protein Lactylation: A Bridge between Epigenetics and Metabolic Reprogramming in Cancer. Cell Proliferation, 56, e13478. >https://doi.org/10.1111/cpr.13478 Zhang, L. and Li, S. (2020) Lactic Acid Promotes Macrophage Polarization through Mct-Hif1α Signaling in Gastric Cancer. Experimental Cell Research, 388, Article ID: 111846. >https://doi.org/10.1016/j.yexcr.2020.111846 Sun, J., Feng, Q., He, Y., Wang, M. and Wu, Y. (2024) Lactate Activates CCL18 Expression via H3K18 Lactylation in Macrophages to Promote Tumorigenesis of Ovarian Cancer. Acta Biochimica et Biophysica Sinica, 56, 1373-1386. >https://doi.org/10.3724/abbs.2024111 Li, M., Sun, P., Tu, B., Deng, G., Li, D. and He, W. (2024) Hypoxia Conduces the Glioma Progression by Inducing M2 Macrophage Polarization via Elevating TNFSF9 Level in a Histone-Lactylation-Dependent Manner. American Journal of Physiology-Cell Physiology, 327, C487-C504. >https://doi.org/10.1152/ajpcell.00124.2024 Cai, J., Song, L., Zhang, F., Wu, S., Zhu, G., Zhang, P., et al. (2024) Targeting SRSF10 Might Inhibit M2 Macrophage Polarization and Potentiate Anti‐PD‐1 Therapy in Hepatocellular Carcinoma. Cancer Communications, 44, 1231-1260. >https://doi.org/10.1002/cac2.12607 Huang, C., Xue, L., Lin, X., Shen, Y. and Wang, X. (2024) Histone Lactylation-Driven GPD2 Mediates M2 Macrophage Polarization to Promote Malignant Transformation of Cervical Cancer Progression. DNA and Cell Biology, 43, 605-618. >https://doi.org/10.1089/dna.2024.0122 Sen, D.R., Kaminski, J., Barnitz, R.A., Kurachi, M., Gerdemann, U., Yates, K.B., et al. (2016) The Epigenetic Landscape of T Cell Exhaustion. Science, 354, 1165-1169. >https://doi.org/10.1126/science.aae0491 Grist, J.T., Jarvis, L.B., Georgieva, Z., Thompson, S., Kaur Sandhu, H., Burling, K., et al. (2018) Extracellular Lactate: A Novel Measure of T Cell Proliferation. The Journal of Immunology, 200, 1220-1226. >https://doi.org/10.4049/jimmunol.1700886 Klein Geltink, R.I., Kyle, R.L. and Pearce, E.L. (2018) Unraveling the Complex Interplay between T Cell Metabolism and Function. Annual Review of Immunology, 36, 461-488. >https://doi.org/10.1146/annurev-immunol-042617-053019 Raychaudhuri, D., Singh, P., Chakraborty, B., Hennessey, M., Tannir, A.J., Byregowda, S., et al. (2024) Histone Lactylation Drives CD8+ T Cell Metabolism and Function. Nature Immunology, 25, 2140-2151. >https://doi.org/10.1038/s41590-024-01985-9 Zeng, Y., Huang, Y., Tan, Q., Peng, L., Wang, J., Tong, F., et al. (2024) Influence of Lactate in Resistance to Anti‑PD‑1/ PD‑L1 Therapy: Mechanisms and Clinical Applications (Review). Molecular Medicine Reports, 31, Article No. 48. >https://doi.org/10.3892/mmr.2024.13413 Yao, J., Lin, X., Zhang, X., Xie, M., Ma, X., Bao, X., et al. (2024) Predictive Biomarkers for Immune Checkpoint Inhibitors Therapy in Lung Cancer. Human Vaccines & Immunotherapeutics, 20, Article ID: 2406063. >https://doi.org/10.1080/21645515.2024.2406063 Ganesh, K., Stadler, Z.K., Cercek, A., Mendelsohn, R.B., Shia, J., Segal, N.H., et al. (2019) Immunotherapy in Colorectal Cancer: Rationale, Challenges and Potential. Nature Reviews Gastroenterology & Hepatology, 16, 361-375. >https://doi.org/10.1038/s41575-019-0126-x Tong, H., Jiang, Z., Song, L., Tan, K., Yin, X., He, C., et al. (2024) Dual Impacts of Serine/Glycine-Free Diet in Enhancing Antitumor Immunity and Promoting Evasion via PD-L1 Lactylation. Cell Metabolism, 36, 2493-2510.e9. >https://doi.org/10.1016/j.cmet.2024.10.019 Hu, X., Huang, Z. and Li, L. (2024) LDHB Mediates Histone Lactylation to Activate PD-L1 and Promote Ovarian Cancer Immune Escape. Cancer Investigation, 43, 70-79. >https://doi.org/10.1080/07357907.2024.2430283 Zhang, C., Zhou, L., Zhang, M., Du, Y., Li, C., Ren, H., et al. (2024) H3K18 Lactylation Potentiates Immune Escape of Non-Small Cell Lung Cancer. Cancer Research, 84, 3589-3601. >https://doi.org/10.1158/0008-5472.can-23-3513 Zhu, X., Zhu, H., Luo, H., Zhang, W., Shen, Z. and Hu, X. (2016) Molecular Mechanisms of Cisplatin Resistance in Cervical Cancer. Drug Design, Development and Therapy, 10, 1885-1895. >https://doi.org/10.2147/dddt.s106412 Li, J., Chen, Z., Pan, Y. and Zeng, L. (2025) The Important Role of Lactylation in Regulating DNA Damage Repair and Tumor Chemotherapy Resistance. Drug Resistance Updates, 78, Article ID: 101148. >https://doi.org/10.1016/j.drup.2024.101148 Chen, H., Li, Y., Li, H., Chen, X., Fu, H., Mao, D., et al. (2024) NBS1 Lactylation Is Required for Efficient DNA Repair and Chemotherapy Resistance. Nature, 631, 663-669. >https://doi.org/10.1038/s41586-024-07620-9 Li, G., Wang, D., Zhai, Y., Pan, C., Zhang, J., Wang, C., et al. (2024) Glycometabolic Reprogramming-Induced XRCC1 Lactylation Confers Therapeutic Resistance in Aldh1a3-Overexpressing Glioblastoma. Cell Metabolism, 36, 1696-1710.e10. >https://doi.org/10.1016/j.cmet.2024.07.011 Yue, Q., Wang, Z., Shen, Y., Lan, Y., Zhong, X., Luo, X., et al. (2024) Histone H3K9 Lactylation Confers Temozolomide Resistance in Glioblastoma via LUC7L2‐Mediated MLH1 Intron Retention. Advanced Science, 11, e2309290. >https://doi.org/10.1002/advs.202309290 Li, W., Zhou, C., Yu, L., Hou, Z., Liu, H., Kong, L., et al. (2023) Tumor-Derived Lactate Promotes Resistance to Bevacizumab Treatment by Facilitating Autophagy Enhancer Protein RUBCNL Expression through Histone H3 Lysine 18 Lactylation (h3k18la) in Colorectal Cancer. Autophagy, 20, 114-130. >https://doi.org/10.1080/15548627.2023.2249762 Chen, J., Zhao, D., Wang, Y., Liu, M., Zhang, Y., Feng, T., et al. (2024) Lactylated Apolipoprotein C‐II Induces Immunotherapy Resistance by Promoting Extracellular Lipolysis (Adv. Sci. 38/2024). Advanced Science, 11, e2406333. >https://doi.org/10.1002/advs.202470226 Lu, Y., Zhu, J., Zhang, Y., Li, W., Xiong, Y., Fan, Y., et al. (2024) Lactylation‐Driven IGF2BP3‐Mediated Serine Metabolism Reprogramming and RNA M6a—Modification Promotes Lenvatinib Resistance in HCC. Advanced Science, 11, e2401399. >https://doi.org/10.1002/advs.202401399
Baidu
map