<xref></xref>Table 1. Compares the advantages and disadvantages of different types of sensorsTable 1. Compares the advantages and disadvantages of different types of sensors 表1. 不同类型传感器的优缺点比较
纸基压力传感器的制备方法主要包括材料选择、结构设计和制造工艺三个方面。在材料选择方面,纸基材料通常选用普通打印纸、滤纸或特种纸,这些材料具有多孔结构、良好的柔韧性和可降解性。功能性材料的选择则取决于传感器的工作原理,常用的材料包括碳纳米管、石墨烯、金属纳米线等导电材料,以及聚偏氟乙烯等压电材料。如
图2
所示,Yun T
[31]
等人创新性地采用羧甲基纤维素钠(CMC)离子
Figure 2. (a) Schematic illustration of fabricating superhydrophobic PB strain sensor and (b) the design concept inspired from the structure of human skin [31]--图2. (a) 制作超疏水PB应变传感器的示意图和(b)受人类皮肤结构启发的设计概念[31]--
Figure 3. Pressure sensor with a roughened structural design. (a) Schematic illustration of the fabrication process of the rough-rough pressure sensors. (b, c) Cross-sectional and top-view SEM images of the conical frustum-like PDMS microstructures [32]--图3. 具有粗糙结构设计的压力传感器。(a) Rough-Rough压力传感器制造工艺示意图。(b, c)圆锥状PDMS微观结构的横截面和俯视扫描电子显微镜图像[32]--
References
Chen, Y., Wang, S., Liu, Y., Deng, H., Gao, H., Cao, M., et al. (2024) Ultra-Low Cost and High-Performance Paper-Based Flexible Pressure Sensor for Artificial Intelligent E-skin. Chemical Engineering Journal, 499, Article 156293. >https://doi.org/10.1016/j.cej.2024.156293
Loeys, S., Boute, R.N. and Antonio, K. (2025) The Use of IoT Sensor Data to Dynamically Assess Maintenance Risk in Service Contracts. European Journal of Operational Research. >https://doi.org/10.1016/j.ejor.2025.01.041
Rayabharapu, V.K., Rampur, V., Jyothi, N.M., Tripathi, V., Bhaskar, T. and Glory, K.B. (2022) IoT Sensor-Based Pollution Management Control Technique. Measurement: Sensors, 24, Article 100513. >https://doi.org/10.1016/j.measen.2022.100513
Song, X., Fan, Y. and Tang, X. (2025) FBG-Based Wearable Sensors and Devices in the Healthcare Field: A Review. Optics&Laser Technology, 181, Article 111920. >https://doi.org/10.1016/j.optlastec.2024.111920
Di, K., Wei, J., Ding, L., Shao, Z., Sha, J., Zhou, X., et al. (2025) A Wearable Sensor Device Based on Screen-Printed Chip with Biofuel Cell-Driven Electrochromic Display for Noninvasive Monitoring of Glucose Concentration. Chinese Chemical Letters, 36, Article 109911. >https://doi.org/10.1016/j.cclet.2024.109911
Holman, J.B., Oseyemi, A.E., Koumbia, M., Shi, Z., Li, C. and Ding, W. (2025) The Rise of Eco-Friendly Electronics: Exploring Wearable Paper-Based Electroanalytical Devices. Materials Science and Engineering: R: Reports, 163, Article 100939. >https://doi.org/10.1016/j.mser.2025.100939
Ha, T.W., Lee, C., Lim, D.Y., Kim, Y.B., Cho, H., Kim, J.H., et al. (2025) Highly Durability Carbon Fabric Strain Sensor: Monitoring Environmental Changes and Tracking Human Motion. Carbon Trends, 19, Article 100457. >https://doi.org/10.1016/j.cartre.2025.100457
Olabintan, A.B., Abdullahi, A.S., Yusuf, B.O., Ganiyu, S.A., Saleh, T.A. and Basheer, C. (2024) Prospects of Polymer Nanocomposite-Based Electrochemical Sensors as Analytical Devices for Environmental Monitoring: A Review. Microchemical Journal, 204, Article 111053. >https://doi.org/10.1016/j.microc.2024.111053
Narayana, T.L., Venkatesh, C., Kiran, A., Khan, S.B., Kumar, A., Khan, S.B., et al. (2024) Advances in Real Time Smart Monitoring of Environmental Parameters Using IoT and Sensors. Heliyon, 10, e28195. >https://doi.org/10.1016/j.heliyon.2024.e28195
Wei, C., Xu, Y., Hu, Y., Zhang, Q., Wei, N., Zeng, W., et al. (2025) Ti
3C
2T
x Mxene Paper-Based Flexible Wearable Pressure Sensor with Wide Pressure Detection Range for Human Motion Detection. Journal of Alloys and Compounds, 1017, Article 179126. >https://doi.org/10.1016/j.jallcom.2025.179126
Hao, J., Liu, H., Du, S., Xiang, H., Liu, G., Li, Z., et al. (2024) Rational Design of Biomass-Derived and UV-Curable Dynamic Polymer for the Encapsulation of Paper-Based Flexible Strain Sensor. Materials Today Sustainability, 26, Article 100756. >https://doi.org/10.1016/j.mtsust.2024.100756
Cao, M., Su, J., Fan, S., Qiu, H., Su, D. and Li, L. (2021) Wearable Piezoresistive Pressure Sensors Based on 3D Graphene. Chemical Engineering Journal, 406, Article 126777. >https://doi.org/10.1016/j.cej.2020.126777
Ruth, S.R.A. and Bao, Z. (2020) Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry. ACS Applied Materials&Interfaces, 12, 58301-58316. >https://doi.org/10.1021/acsami.0c19196
Su, Y.-F., Han, G., Kong, Z., et al. (2020) Embeddable Piezoelectric Sensors for Strength Gain Monitoring of Cementitious Materials: The Influence of Coating Materials. Engineered Science, 11, 66-75.
Guo, X., Li, Y., Zeng, Z., Zhao, Y., Lei, X., Wang, Y., et al. (2023) Ultra-Sensitive Flexible Pressure Sensor with Hierarchical Structural Laser-Induced Carbon Nanosheets/Carbon Nanotubes Composite Film. Composites Science and Technology, 244, Article 110290. >https://doi.org/10.1016/j.compscitech.2023.110290
Zhu, H., Dai, S., Cao, J., Bai, H., Zhong, Y., Zhang, Z., et al. (2022) A High-Performance Textile Pressure Sensor Based on Carbon Black/Carbon Nanotube-Polyurethane Coated Fabrics with Porous Structure for Monitoring Human Motion. Materials Today Communications, 33, Article 104541. >https://doi.org/10.1016/j.mtcomm.2022.104541
Wang, L., Hu, J., Wei, W., Song, Y., Li, Y., Shen, Y., et al. (2024) Electrochemical Paper-Based Sensor Based on Molecular Imprinted Polymer and Nitrogen-Doped Graphene for Tetracycline Determination. Microchemical Journal, 207, Article 111809. >https://doi.org/10.1016/j.microc.2024.111809
Liang, Y., Mi, X., Yang, S., Wang, J. and Zhang, C. (2024) High-Performance Flexible Pressure Sensors with Bionic Dome-Shaped Fold Structures Inspired by Crocodile Skin. Sensors and Actuators A: Physical, 378, Article 115827. >https://doi.org/10.1016/j.sna.2024.115827
Pierre Claver, U. and Zhao, G. (2021) Recent Progress in Flexible Pressure Sensors Based Electronic Skin. Advanced Engineering Materials, 23, Article 2001187. >https://doi.org/10.1002/adem.202001187
Zhang, C., Tao, M., Luo, W., Zhao, X., Li, P., Gou, X., et al. (2024) Graphene Sterically-Wrapped Textile Piezoresistive Sensors: A Spray Coating Path for Synergistically Advancing Sensitivity and Response Range. Chemical Engineering Journal, 495, Article 153533. >https://doi.org/10.1016/j.cej.2024.153533
Zhao, W., Natsuki, J., Dinh Trung, V., Li, H., Tan, J., Yang, W., et al. (2024) AgNPs/CNTs Modified Nonwoven Fabric for PET-Based Flexible Interdigitated Electrodes in Pressure Sensor Applications. Chemical Engineering Journal, 499, Article 156252. >https://doi.org/10.1016/j.cej.2024.156252
Chen, Z., Ma, Y., Wang, H., Yu, B., Qian, L. and Zhao, Z. (2024) Starfish-Inspired Ultrasensitive Piezoresistive Pressure Sensor with an Ultra-Wide Detection Range for Healthcare and Intelligent Production. Chemical Engineering Journal, 497, Article 154953. >https://doi.org/10.1016/j.cej.2024.154953
Wright, D.N., Züchner, M., Annavini, E., Escalona, M.J., Hammerlund Teige, L., Whist Tvedt, L.G., et al. (2024) From Wires to Waves, a Novel Sensor System for in vivo Pressure Monitoring. Scientific Reports, 14, Article No. 7570. >https://doi.org/10.1038/s41598-024-58019-5
Romano, C., Lo Presti, D., Silvestri, S., Schena, E. and Massaroni, C. (2024) Flexible Textile Sensors-Based Smart T-Shirt for Respiratory Monitoring: Design, Development, and Preliminary Validation. Sensors, 24, Article 2018. >https://doi.org/10.3390/s24062018
Xiong, Y., Shen, Y., Tian, L., Hu, Y., Zhu, P., Sun, R., et al. (2020) A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring. Nano Energy, 70, Article 104436. >https://doi.org/10.1016/j.nanoen.2019.104436
Zheng, Y., Yu, Z., Mao, G., Li, Y., Pravarthana, D., Asghar, W., et al. (2020) A Wearable Capacitive Sensor Based on Ring/Disk‐Shaped Electrode and Porous Dielectric for Noncontact Healthcare Monitoring. Global Challenges, 4, Article ID: 1900079. >https://doi.org/10.1002/gch2.201900079
Aubeeluck, D.A., Forbrigger, C., Mohseni Taromsari, S., Chen, T., Diller, E. and Naguib, H.E. (2024) Screen-Printed Capacitive Tactile Sensor for Monitoring Tool-Tissue Interactions and Grasping Performances of a Surgical Magnetic Microgripper. ACS Applied Electronic Materials, 6, 6365-6377. >https://doi.org/10.1021/acsaelm.4c00841
Zhao, X., Chen, K., Huang, W., Luo, F., Wang, X. and Qin, Y. (2024) A Skin-Like Self-Powered Flexible Sensor for Wearable Monitoring and Robotic Tactile Application. IEEE Sensors Journal, 24, 39651-39658. >https://doi.org/10.1109/jsen.2024.3476173
Zhang, X., Ma, J., Deng, H., Zhong, J., Xu, K., Wu, Q., et al. (2024) A Mixed-Coordination Electron Trapping-Enabled High-Precision Touch-Sensitive Screen for Wearable Devices. Bio-Design and Manufacturing, 7, 413-427. >https://doi.org/10.1007/s42242-024-00293-3
Wang, X., Yu, J., Cui, Y. and Li, W. (2021) Research Progress of Flexible Wearable Pressure Sensors. Sensors and Actuators A: Physical, 330, Article 112838. >https://doi.org/10.1016/j.sna.2021.112838
Yun, T., Du, J., Ji, X., Tao, Y., Cheng, Y., Lv, Y., et al. (2023) Waterproof and Ultrasensitive Paper-Based Wearable Strain/Pressure Sensor from Carbon Black/Multilayer Graphene/Carboxymethyl Cellulose Composite. Carbohydrate Polymers, 313, Article 120898. >https://doi.org/10.1016/j.carbpol.2023.120898
Chen, M., Li, K., Cheng, G., He, K., Li, W., Zhang, D., et al. (2018) Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Applied Materials&Interfaces, 11, 2551-2558. >https://doi.org/10.1021/acsami.8b20284
Wang, C., Quan, J., Liu, L., Cao, P., Ding, K., Ding, Y., et al. (2024) A Rigid-Soft Hybrid Paper-Based Flexible Pressure Sensor with an Ultrawide Working Range and Frequency Bandwidth. Journal of Materials Chemistry A, 12, 13994-14004. >https://doi.org/10.1039/d4ta01394h
Wang, X., Chai, Y., Wang, Z., Yu, J. and Chen, X. (2023) A Linear and Large-Range Pressure Sensor Based on Hierarchical Structural SnO
2@Carbon Nanotubes/Polyurethane Sponge. Ceramics International, 49, 30579-30585. >https://doi.org/10.1016/j.ceramint.2023.07.009
Zang, X., Jiang, Y., Wang, X., Wang, X., Ji, J. and Xue, M. (2018) Highly Sensitive Pressure Sensors Based on Conducting Polymer-Coated Paper. Sensors and Actuators B: Chemical, 273, 1195-1201. >https://doi.org/10.1016/j.snb.2018.06.132
Pranjale, G.S., Rayudu, G.P. and Patil, G.C. (2024) Analysis and Fabrication of Paper Based Screen-Printed Soil Potassium Sensor. Journal of the Indian Chemical Society, 101, Article 101492. >https://doi.org/10.1016/j.jics.2024.101492
Wu, G., Wu, L., Zhang, H., Wang, X., Xiang, M., Teng, Y., et al. (2024) Research Progress of Screen-Printed Flexible Pressure Sensor. Sensors and Actuators A: Physical, 374, Article 115512. >https://doi.org/10.1016/j.sna.2024.115512
Jung, M., Kim, K., Kim, B., Cheong, H., Shin, K., Kwon, O., et al. (2017) Paper-Based Bimodal Sensor for Electronic Skin Applications. ACS Applied Materials&Interfaces, 9, 26974-26982. >https://doi.org/10.1021/acsami.7b05672
Wang, Z., Ding, J. and Guo, R. (2023) Printable All-Paper Pressure Sensors with High Sensitivity and Wide Sensing Range. ACS Applied Materials&Interfaces, 15, 4789-4798. >https://doi.org/10.1021/acsami.2c19100
Li, A., Xu, J., Zhou, S., Zhang, Z., Cao, D., Wang, B., et al. (2024) All‐Paper‐Based, Flexible, and Bio‐Degradable Pressure Sensor with High Moisture Tolerance and Breathability through Conformally Surface Coating. Advanced Functional Materials, 34, Article ID: 2410762. >https://doi.org/10.1002/adfm.202410762
Liu, H., Zhang, Q., Yang, N., Jiang, X., Wang, F., Yan, X., et al. (2023) Ti
3C
2T
x MXene Paper-Based Wearable and Degradable Pressure Sensor for Human Motion Detection and Encrypted Information Transmission. ACS Applied Materials&Interfaces, 15, 44554-44562. >https://doi.org/10.1021/acsami.3c09176
Lai, S., Garufi, A., Madeddu, F., Angius, G., Bonfiglio, A. and Cosseddu, P. (2019) A Wearable Platform for Monitoring Wrist Flexion and Extension in Biomedical Applications Using Organic Transistor-Based Strain Sensors. IEEE Sensors Journal, 19, 6020-6028. >https://doi.org/10.1109/jsen.2019.2909174
Lin, X., Teng, Y., Xue, H., Bing, Y., Li, F., Wang, J., et al. (2024) Janus Conductive Mechanism: An Innovative Strategy Enabling Ultra‐Wide Linearity Range Pressure Sensing for Multi‐Scenario Applications. Advanced Functional Materials, 34, Article ID: 2316314. >https://doi.org/10.1002/adfm.202316314
Shen, L., Zhou, S., Gu, B., Wang, S. and Wang, S. (2023) Highly Sensitive Strain Sensor Fabricated by Direct Laser Writing on Lignin Paper with Strain Engineering. Advanced Engineering Materials, 25, Article ID: 2201882. >https://doi.org/10.1002/adem.202201882
Xia, Y., Huang, P., Lin, X., Wu, L., Li, K., Gao, C., et al. (2023) The Piezoresistive Pressure Sensors Based on ITO Nanocrystalline-Plant Fiber Composite. Science China Materials, 66, 3922-3930. >https://doi.org/10.1007/s40843-023-2534-1
Chowdhury, A.H., Jafarizadeh, B., Pala, N. and Wang, C. (2023) Paper-Based Supercapacitive Pressure Sensor for Wrist Arterial Pulse Waveform Monitoring. ACS Applied Materials&Interfaces, 15, 53043-53052. >https://doi.org/10.1021/acsami.3c08720