<xref></xref>Table 1. Perovskite tolerance factor in the Ba<sub>1-x</sub>Sr<sub>x</sub>Zr<sub>0.1</sub>Ce₀.₇Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3-δ</sub> systemTable 1. Perovskite tolerance factor in the Ba1-xSrxZr0.1Ce₀.₇Y0.1Yb0.1O3-δ system 表1. Ba1-xSrxZr0.1Ce0.7Y0.1Yb0.1O3-δ体系中的钙钛矿容差因子
Figure 2. Radial shrinkage of Ba1-xSrxZr0.1Ce₀.₇Y0.1Yb0.1O3−δ electrolytes as a function of Sr doping level after sintering at different temperatures for 4 h--图2. 不同温度烧结4 h后Ba1-xSrxZr0.1Ce0.7Y0.1Yb0.1O3-δ电解质的径向收缩率随Sr掺杂量的变化--3.3. 电学性能
Figure 3. Typical impedance spectra, equivalent circuit diagrams, and DRT spectra of the BSZCYYb25 electrolyte at different testing temperatures: (a) 300˚C, (b) 400˚C--图3. BSZCYYb25电解质在不同测试温度下典型阻抗谱、等效电路图和DRT谱图(a) 300℃,(b) 400℃--Figure 4. Variation of electrical conductivity with Sr doping content in Ba1-xSrxZr0.1Ce₀.₇Y0.1Yb0.1O3-δ under humidified air at different temperatures--图4. 湿空气气氛下Ba1-xSrxZr0.1Ce0.7Y0.1Yb0.1O3-δ样品在不同测试温度中的电导率随Sr掺杂量的变化--
Figure 5. Arrhenius plot of the Ba1-xSrxZr0.1Ce₀.₇Y0.1Yb0.1O3-δ electrolyte under humidified air atmosphere--图5. Ba1-xSrxZr0.1Ce0.7Y0.1Yb0.1O3-δ电解质在湿空气气氛下的Arrhenius图--4. 结论
References
Lai, Q., Chen, J., Chang, F., Pei, J., Liang, Y., Chen, X., et al. (2023) Cold Sintering Process Assisted Sintering for 8YSZ Ceramic: A Way of Achieving High Density and Electrical Conductivity at a Reduced Sintering Temperature. Ceramics International, 49, 14744-14749. >https://doi.org/10.1016/j.ceramint.2023.01.070
Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z., et al. (2009) Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: Bazr
0.1Ce
0.7Y
0.2–xYb
xO
3–δ. Science, 326, 126-129. >https://doi.org/10.1126/science.1174811
Wang, S., Zhang, L., Zhang, L., Brinkman, K. and Chen, F. (2013) Two-Step Sintering of Ultrafine-Grained Barium Cerate Proton Conducting Ceramics. Electrochimica Acta, 87, 194-200. >https://doi.org/10.1016/j.electacta.2012.09.007
Liu, Y., Yang, L., Liu, M., Tang, Z. and Liu, M. (2011) Enhanced Sinterability of Bazr
0.1Ce
0.7Y
0.2–xYb
xO
3–δ by Addition of Nickel Oxide. Journal of Power Sources, 196, 9980-9984. >https://doi.org/10.1016/j.jpowsour.2011.08.047
Dudek, M., Lis, B., Lach, R., Daugėla, S., Šalkus, T., Kežionis, A., et al. (2019) Ba
0.95Ca
0.05Ce
0.9Y
0.1O
3 as an Electrolyte for Proton-Conducting Ceramic Fuel Cells. Electrochimica Acta, 304, 70-79. >https://doi.org/10.1016/j.electacta.2019.02.112
Wan, Y., He, B., Wang, R., Ling, Y. and Zhao, L. (2017) Effect of Co Doping on Sinterability and Protonic Conductivity of Bazr
0.1Ce
0.7Y
0.2–xYb
xO
3–δ for Protonic Ceramic Fuel Cells. Journal of Power Sources, 347, 14-20. >https://doi.org/10.1016/j.jpowsour.2017.02.049
Zhou, X., Liu, L., Zhen, J., Zhu, S., Li, B., Sun, K., et al. (2011) Ionic Conductivity, Sintering and Thermal Expansion Behaviors of Mixed Ion Conductor Bazr
0.1Ce
0.7Y
0.2–xYb
xO
3–δ Prepared by Ethylene Diamine Tetraacetic Acid Assisted Glycine Nitrate Process. Journal of Power Sources, 196, 5000-5006. >https://doi.org/10.1016/j.jpowsour.2011.01.092
Zhang, C. and Zhao, H. (2010) Electrical Conduction Behavior of Sr Substituted Proton Conductor Ba
1−xSr
xCe
0.9Nd
0.1O
3−δ. Solid State Ionics, 181, 1478-1485. >https://doi.org/10.1016/j.ssi.2010.08.028
Bonanos, N. (1995) Perovskite Solid Electrolytes: Structure, Transport Properties and Fuel Cell Applications. Solid State Ionics, 79, 161-170. >https://doi.org/10.1016/0167-2738(95)00056-c
Jaiswal, S.K. and Kumar, J. (2012) Structural and Optical Absorption Studies of Barium Substituted Strontium Ferrite Powder. Solid State Sciences, 14, 1157-1168. >https://doi.org/10.1016/j.solidstatesciences.2012.05.011
Arabacı, A., Altınçekiç, T.G., Der, M. and Öksüzömer, M.A.F. (2019) Preparation and Properties of Ceramic Electrolytes in the Nd and Gd Co-Doped Ceria Systems Prepared by Polyol Method. Journal of Alloys and Compounds, 792, 1141-1149. >https://doi.org/10.1016/j.jallcom.2019.04.098
Wang, S., Zhao, F., Zhang, L., Brinkman, K. and Chen, F. (2010) Stability and Electrical Property of Ba
1−xSr
xCe
0.8Y
0.2O
3−δ High Temperature Proton Conductor. Journal of Alloys and Compounds, 506, 263-267. >https://doi.org/10.1016/j.jallcom.2010.06.188
Iwahara, H. (1996) Proton Conducting Ceramics and Their Applications. Solid State Ionics, 86, 9-15. >https://doi.org/10.1016/0167-2738(96)00087-2
Madhuri Sailaja, J., Vijaya Babu, K., Murali, N. and Veeraiah, V. (2017) Effect of Strontium on Nd Doped Ba
1−xSr
xCe
0.65Zr
0.25Nd
0.1O
3−Δ Proton Conductor as an Electrolyte for Solid Oxide Fuel Cells. Journal of Advanced Research, 8, 169-181. >https://doi.org/10.1016/j.jare.2016.12.006