Preparation of Polyacrylamide/Lanthanum Alginate Imprinted Polymer Gel Spheres and Their Adsorption of La(III) Ions
A new type of polyacrylamide/sodium alginate imprinted polymer gel spheres (referred to as La-SA@PAM) was developed by using lanthanum alginate as the matrix material, combined with ion imprinting technology and lanthanide ion cross-linking treatment, and modified by polyacrylamide. The material showed excellent performance in terms of adsorption efficacy, separation and enrichment efficiency, recycling durability and recycling convenience. We analysed the structure of the substance by SEM, XRD and Uv-vis. The specific effects of starting pH, adsorption time and temperature on the adsorption performance of La-SA@PAM were thoroughly investigated in the study of La(III)-containing wastewater treatment. The experimental data showed that the maximum adsorption capacity of 75.6 mg/g was achieved at pH 7.0 and room temperature. In addition, the adsorption kinetics of La-SA@PAM followed the proposed L2 model, and its isothermal adsorption characteristics were in accordance with the Langmuir model, with the maximum adsorption capacity up to 75.6 mg/g. In five consecutive adsorption-desorption cycling experiments, the adsorption capacity of the material was 99.21%, 98.04%, 97.5%, and 80%, which fully demonstrated that the material could at least remove La(III) efficiently and effectively. It is fully demonstrated that the material can be efficiently recycled at least four times. In conclusion, the La-SA@PAM polymer gel spheres have great potential and promising application in the treatment of La(III) wastewater.
Adsorption
稀土元素也被称为“工业维生素”,已被广泛应用于超导体、磁铁、催化剂和电池等许多技术设备中
离子印迹技术是分子印迹技术的分支,与抗原抗体特异性结合的机制相似
根据以上探讨,本研究采用SA作为基础材料,以La(Ⅲ)离子为交联剂,并结合PAM对La-SA进行改性,通过聚合过程制备出目标材料,用HCl洗脱La来制备聚丙烯酰胺/海藻酸镧印迹聚合物凝胶球(La-SA@PAM),并直接用于水体中La(III)的吸附,并探讨其吸附性能与机理。
海藻酸钠(Sodium Alginate, SA):AR,山东西亚化学工业有限公司;聚丙烯酰胺(Polyacrylamide, PAM):GB,山东科源生化有限公司;硝酸镧(La(NO3)3·6H2O):AR,山东西亚化学工业有限公司。
将0.4 g SA粉末加入25 mL的蒸馏水中,室温下搅拌1 h,将混合液通过20 mL注射器滴入到30 g/L浓度的La(III)离子溶液中,充分反应后,固化24小时,将得到的小球取出洗涤,将洗涤后的La-SA微球浸泡在100 ml的PAM溶液中,反应24小时,使PAM与La-SA微球发生反应,形成PAM改性的La3+离子印迹材料SA-PAM。待反应完成后,将海藻酸盐印迹聚合物凝胶球用100 mL 0.05 mol/L HCl溶液浸泡48小时,以洗脱La-SA@PAM中的La3+,得到SA-PAM-H材料。将制得的小球取出,使用蒸馏水反复洗涤直至其呈中性,随后进行干燥处理,最终获得目标产物——La-SA@PAM凝胶球。
在25 ml特定浓度的La(III)离子溶液中添加预定量的镧离子印迹聚合物凝胶球,随后,将样品放入设定为298 K的水浴振荡器中,直至吸附反应达到平衡。通过测量溶液在最大吸收波长(λmax)下的吸光度,并利用特定的计算公式,得出了聚合物凝胶球对La(III)离子的吸附量qe (mg/g)以及去除率R (%)。
(2)
利用扫描电镜(SEM)对SA和La-SA@PAM印迹聚合物凝胶球的表面微结构进行了表征。通过
实验深入分析了接触时间和温度对La-SA@PAM吸附La(III)离子效能的影响,如
使用拟一级和拟二级吸附速率方程拟合了298、313、328温度下的吸附动力学数据。
(3)
(4)
式中:k1 (min−1)、k2 [g∙(mg·min)−1]分别代表伪一级动力学(PFO)和伪二级动力学(PSO)的速率常数,qe代表达到吸附平衡时的吸附量,qt则表示在时间t (min)时的吸附量, 和 (mg/g)分别是根据拟一级和拟二级吸附速率方程拟合得到的理论平衡吸附量。
Adsorbate |
T/K |
qe,exp (mg/g) |
Pseudo-first-order |
Pseudo-second-order |
||||
k1 |
|
R2 |
k2 |
|
R2 |
|||
(h−1) |
(mg/g) |
[g/(mg·h)] |
(mg/g) |
|||||
La |
298 |
75.6 |
2.06 |
70.4 |
0.940 |
0.0331 |
76.3 |
0.985 |
313 |
77.1 |
2.63 |
73.1 |
0.964 |
0.0449 |
77.3 |
0.982 |
|
328 |
77.6 |
4.12 |
73.7 |
0.932 |
0.0787 |
77.8 |
0.964 |
采用Langmuir和Freundlich等温模型对平衡吸附数据进行了分析。
(5)
(6)
式中:KL (L/mg)为Langmuir吸附系数;KF和n代表Freundlich经验常数;Ce (mg/L)为La(III)离子溶液吸附平衡浓度;qm (mg/g)为最大吸附容量。
Adsorbate |
T/K |
qe,exp (mg/g) |
Langmuir |
Freundlich |
||||
qm (mg/g) |
KL (L/mg) |
R2 |
n |
KF |
R2 |
|||
La |
298 |
75.6 |
73.0 |
0.685 |
0.984 |
5.72 |
44.9 |
0.964 |
313 |
77.1 |
76.0 |
0.549 |
0.988 |
5.83 |
46.7 |
0.956 |
|
328 |
77.6 |
76.6 |
0.804 |
0.985 |
5.94 |
46.9 |
0.981 |
通过离子印迹技术,我们成功制备了聚丙烯酰胺/海藻酸镧La-SA@PAM印迹聚合物凝胶球,该材料可直接应用于La(III)离子的废水处理。在298 K且La(III)离子溶液pH值为7.0的条件下,La-SA@PAM凝胶球对La(III)的吸附容量和去除效率分别高达75.6 mg/g和84.3%。该凝胶球的吸附过程与拟二级动力学速率模型高度吻合。此外,其等温吸附特性也很好地遵循了Langmuir模型。经过连续五次循环再生后,该材料的再生率依次为99.52%、99.21%、98.04%、97.5%和80%,表明La-SA@PAM至少可高效循环使用四次以上。凭借高效性、广泛的pH适应性、易于分离回收等特点,La-SA@PAM作为一种可持续的生物吸附材料,不仅生态友好,而且具有高附加值,特别是在循环利用方面展现出广阔的应用潜力。
国家自然科学基金项目(21167011);内蒙古自治区自然科学基金项目(2020LH02009);内蒙古自治区水环境安全协同创新中心项目(XTCX003);内蒙古师范大学基本科研业务费专项资金项目(2022JBTD009)。
*通讯作者。