References
Xu, T., Sathaye, J., Akbari, H., Garg, V. and Tetali, S. (2012) Quantifying the Direct Benefits of Cool Roofs in an Urban Setting: Reduced Cooling Energy Use and Lowered Greenhouse Gas Emissions. Building and Environment, 48, 1-6.
>https://doi.org/10.1016/j.buildenv.2011.08.011
Chu, H., Zhang, Y., Wang, F., Feng, T., Wang, L. and Wang, D. (2020) Effect of Graphene Oxide on Mechanical Properties and Durability of Ultra-High-Performance Concrete Prepared from Recycled Sand. Nanomaterials, 10, Article No. 1718.
>https://doi.org/10.3390/nano10091718
Raza, S., Ghasali, E., Orooji, Y., Lin, H., Karaman, C., Dragoi, E.N., et al. (2023) Two Dimensional (2D) Materials and Biomaterials for Water Desalination; Structure, Properties, and Recent Advances. Environmental Research, 219, Article ID: 114998.
>https://doi.org/10.1016/j.envres.2022.114998
陈武峰. 石墨烯材料的化学调控、组装及其性能研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2014.
Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
>https://doi.org/10.1038/nmat1849
Geim, A.K. (2009) Graphene: Status and Prospects. Science, 324, 1530-1534.
>https://doi.org/10.1126/science.1158877
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., et al. (2008) Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8, 902-907.
>https://doi.org/10.1021/nl0731872
Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
>https://doi.org/10.1126/science.1157996
Saleh, A. and Noman, N. (2014) Synthesis of Functionalized Single Graphene Sheets by Thermal Exfoliation of Graphite Oxide. Oriental Journal of Chemistry, 30, 1487-1492.
>https://doi.org/10.13005/ojc/300405
Kim, K.S., et al. (2009) Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature, 457, 706-710.
Suo, Y., Guo, R., Xia, H., Yang, Y., Zhou, B. and Zhao, Z. (2022) A Review of Graphene Oxide/Cement Composites: Performance, Functionality, Mechanisms, and Prospects. Journal of Building Engineering, 53, Article ID: 104502.
>https://doi.org/10.1016/j.jobe.2022.104502
Reddy, P.V.R.K. and Ravi Prasad, D. (2022) Graphene Oxide Reinforced Cement Concrete—A Study on Mechanical, Durability and Microstructure Characteristics. Fullerenes, Nanotubes and Carbon Nanostructures, 31, 255-265.
>https://doi.org/10.1080/1536383x.2022.2141231
Song, Y., Yu, J., Dai, D., Song, L. and Jiang, N. (2014) Effect of Silica Particles Modified by In-Situ and Ex-Situ Methods on the Reinforcement of Silicone Rubber. Materials&Design, 64, 687-693.
>https://doi.org/10.1016/j.matdes.2014.08.051
Raza, M.A., Westwood, A., Brown, A., Hondow, N. and Stirling, C. (2011) Characterisation of Graphite Nanoplatelets and the Physical Properties of Graphite Nanoplatelet/Silicone Composites for Thermal Interface Applications. Carbon, 49, 4269-4279.
>https://doi.org/10.1016/j.carbon.2011.06.002
Raza, M.A., Westwood, A.V.K., Brown, A.P. and Stirling, C. (2012) Performance of Graphite Nanoplatelet/Silicone Composites as Thermal Interface Adhesives. Journal of Materials Science: Materials in Electronics, 23, 1855-1863.
>https://doi.org/10.1007/s10854-012-0674-0
Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N., et al. (2010) Dimensional Crossover of Thermal Transport in Few-Layer Graphene. Nature Materials, 9, 555-558.
>https://doi.org/10.1038/nmat2753
Sharon, M. and Sharon, M. (2015). Graphene: An Introduction to the Fundamentals and Industrial Applications. Wiley.
>https://doi.org/10.1002/9781118842577
Sheikh, T.M., Anwar, M.P., Muthoosamy, K., Jaganathan, J., Chan, A. and Mohamed, A.A. (2021) The Mechanics of Carbon-Based Nanomaterials as Cement Reinforcement—A Critical Review. Construction and Building Materials, 303, Article ID: 124441.
>https://doi.org/10.1016/j.conbuildmat.2021.124441
Kavitha, M.K., Rolland, L., Johnson, L., John, H. and Jayaraj, M.K. (2020) Visible Light Responsive Superhydrophilic TiO
2/Reduced Graphene Oxide Coating by Vacuum-Assisted Filtration and Transfer Method for Self-Cleaning Application. Materials Science in Semiconductor Processing, 113, Article ID: 105011.
>https://doi.org/10.1016/j.mssp.2020.105011
Li, X., Korayem, A.H., Li, C., Liu, Y., He, H., Sanjayan, J.G., et al. (2016) Incorporation of Graphene Oxide and Silica Fume into Cement Paste: A Study of Dispersion and Compressive Strength. Construction and Building Materials, 123, 327-335.
>https://doi.org/10.1016/j.conbuildmat.2016.07.022
Han, B., Zhang, L., Zeng, S., Dong, S., Yu, X., Yang, R., et al. (2017) Nano-Core Effect in Nano-Engineered Cementitious Composites. Composites Part A: Applied Science and Manufacturing, 95, 100-109.
>https://doi.org/10.1016/j.compositesa.2017.01.008
Anwar, A., Liu, X. and Zhang, L. (2023) Nano-Cementitious Composites Modified with Graphene Oxide—A Review. Thin-Walled Structures, 183, Article ID: 110326.
>https://doi.org/10.1016/j.tws.2022.110326
Jayasooriya, D., Rajeev, P. and Sanjayan, J. (2022) Application of Graphene-Based Nanomaterials as a Reinforcement to Concrete Pavements. Sustainability, 14, Article No. 11282.
>https://doi.org/10.3390/su141811282
Zheng, Q., Han, B., Cui, X., Yu, X. and Ou, J. (2017) Graphene-Engineered Cementitious Composites: Small Makes a Big Impact. Nanomaterials and Nanotechnology, 7, 119-136.
>https://doi.org/10.1177/1847980417742304
Han, B., Zheng, Q., Sun, S., Dong, S., Zhang, L., Yu, X., et al. (2017) Enhancing Mechanisms of Multi-Layer Graphenes to Cementitious Composites. Composites Part A: Applied Science and Manufacturing, 101, 143-150.
>https://doi.org/10.1016/j.compositesa.2017.06.016
Saleh, A. and Noman, N. (2014) Synthesis of Functionalized Single Graphene Sheets by Thermal Exfoliation of Graphite Oxide. Oriental Journal of Chemistry, 30, 1487-1492.
>https://doi.org/10.13005/ojc/300405
闫立群, 徐亭, 宋天欣. 工业化石墨烯应用研究[J]. 新材料产业, 2016(10): 52-57.
Brodie, B.C. (1859) On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 149, 249-259.
Staudenmaier, L. (1898) Method for the Preparation of Graphitic Acid. Berichte der Deutschen Chemischen Gesellschaft, 31, 1481-1487.
>https://doi.org/10.1002/cber.18980310237
He, D., Shen, L., Zhang, X., Wang, Y., Bao, N. and Kung, H.H. (2014) An Efficient and Eco‐Friendly Solution‐Chemical Route for Preparation of Ultrastable Reduced Graphene Oxide Suspensions. AIChE Journal, 60, 2757-2764.
>https://doi.org/10.1002/aic.14499
Costa, M.C.F., Marangoni, V.S., Ng, P.R., Nguyen, H.T.L., Carvalho, A. and Castro Neto, A.H. (2021) Accelerated Synthesis of Graphene Oxide from Graphene. Nanomaterials, 11, Article No. 551.
>https://doi.org/10.3390/nano11020551
Zhao, X., Zhang, Q., Chen, D. and Lu, P. (2010) Enhanced Mechanical Properties of Graphene-Based Poly(vinyl Alcohol) Composites. Macromolecules, 43, 2357-2363.
>https://doi.org/10.1021/ma902862u
陈梦娇, 伍斌, 夏茹, 等. 石墨烯/聚偏二氟乙烯界面导热性能的模拟研究[J]. 安徽大学学报(自然科学版), 2024, 48(2): 68-75.
Kim, H., Lee, H., Lim, H., Cho, H. and Choa, Y. (2019) Electrically Conductive and Anti-Corrosive Coating on Copper Foil Assisted by Polymer-Nanocomposites Embedded with Graphene. Applied Surface Science, 476, 123-127.
>https://doi.org/10.1016/j.apsusc.2019.01.066
Wei, J., Nie, Z., He, G., Hao, L., Zhao, L. and Zhang, Q. (2014) Energy Harvesting from Solar Irradiation in Cities Using the Thermoelectric Behavior of Carbon Fiber Reinforced Cement Composites. RSC Advances, 4, 48128-48134.
>https://doi.org/10.1039/c4ra07864k
施溪溪, 孙广俊. 氧化石墨烯对水泥基材料力学性能的影响研究[J]. 非金属矿, 2021, 44(1) : 47-50.
王琴, 王健, 吕春祥, 刘伯伟, 张昆, 李崇智. 氧化石墨烯对水泥基复合材料微观结构和力学性能的影响[J]. 新型炭材料, 2015, 30(4): 349-356.
彭晖, 戈娅萍, 杨振天, 刘扬, 吕毅刚. 氧化石墨烯增强水泥基复合材料的力学性能及微观结构[J]. 复合材料学报, 2018, 35(8): 2132-2138.
Lu, Z., Hanif, A., Sun, G., Liang, R., Parthasarathy, P. and Li, Z. (2018) Highly Dispersed Graphene Oxide Electrodeposited Carbon Fiber Reinforced Cement-Based Materials with Enhanced Mechanical Properties. Cement and Concrete Composites, 87, 220-228.
>https://doi.org/10.1016/j.cemconcomp.2018.01.006
Mahan, G., Sales, B. and Sharp, J. (1997) Thermoelectric Materials: New Approaches to an Old Problem. Physics Today, 50, 42-47.
>https://doi.org/10.1063/1.881752
谢金, 杨伟军. 碳纤维增强水泥基复合材料的制备及热电性能研究[J]. 功能材料, 2020, 51(4): 4148-4152, 4159.
Dai, W., Yu, J., Liu, Z., Wang, Y., Song, Y., Lyu, J., et al. (2015) Enhanced Thermal Conductivity and Retained Electrical Insulation for Polyimide Composites with Sic Nanowires Grown on Graphene Hybrid Fillers. Composites Part A: Applied Science and Manufacturing, 76, 73-81.
>https://doi.org/10.1016/j.compositesa.2015.05.017
秦国锋, 张婧婧, 徐子威, 等. BN纤维对石墨烯微片/聚丙烯复合材料导热绝缘性能的影响[J]. 复合材料学报, 2020, 37(3): 546-552.
Chang, H., Tsai, H., Lin, W., Chu, Y. and Hsu, W. (2015) Hexagonal Boron Nitride Coated Carbon Nanotubes: Interlayer Polarization Improved Field Emission. ACS Applied Materials&Interfaces, 7, 14456-14462.
>https://doi.org/10.1021/acsami.5b03492
陈宝锐, 吴其胜, 诸华军, 王顺祥. 石墨烯/水泥基复合材料的制备与性能[J]. 材料科学与工程学报, 2018, 36(4): 650-655.
谢金, 杨伟军. 碳纤维增强水泥基复合材料的制备及热电性能研究[J]. 功能材料, 2020, 51(4): 4148-4152, 4159.
Wei, W. and Qu, X. (2012) Extraordinary Physical Properties of Functionalized Graphene. Small, 8, 2138-2151.
>https://doi.org/10.1002/smll.201200104
吴杰, 王旭, 刘英, 等. 基于高分子聚合物的柔性传感器研究进展[J]. 传感器与微系统, 2022, 41(3): 7-11.
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., et al. (2007) Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Materials, 6, 652-655.
>https://doi.org/10.1038/nmat1967
Huang, M., Pascal, T.A., Kim, H., Goddard, W.A. and Greer, J.R. (2011) Electronic-Mechanical Coupling in Graphene from in Situ Nanoindentation Experiments and Multiscale Atomistic Simulations. Nano Letters, 11, 1241-1246.
>https://doi.org/10.1021/nl104227t
Suzuki, K., Nakagawa, R., Zhang, Q. and Miura, H. (2021) Development of Highly Sensitive Strain Sensor Using Area-Arrayed Graphene Nanoribbons. Nanomaterials, 11, Article No. 1701.
>https://doi.org/10.3390/nano11071701
Sequeira, L., Forero, J., Bravo, M., Evangelista, L. and de Brito, J. (2023) Durability of Concrete with Partial Replacement of Portland Cement by Incorporating Reactive Magnesium Oxide and Fly Ash. Materials, 16, Article No. 2670.
>https://doi.org/10.3390/ma16072670
Zhang, M., Xu, R., Liu, K. and Sun, S. (2022) Research Progress on Durability of Marine Concrete under the Combined Action of Cl
− Erosion, Carbonation, and Dry-Wet Cycles. Reviews on Advanced Materials Science, 61, 622-637.
>https://doi.org/10.1515/rams-2022-0049
Samchenko, S.V., Kozlova, I.V. and Korshunov, A.V. (2023) Optimization of the Composition of Cement Pastes Using Combined Additives of Alumoferrites and Gypsum in Order to Increase the Durability of Concrete. Buildings, 13, Article No. 565.
>https://doi.org/10.3390/buildings13020565
Long, W., Zhang, X., Feng, G., Xie, J., Xing, F., Dong, B., et al. (2022) Investigation on Chloride Binding Capacity and Stability of Friedel’s Salt in Graphene Oxide Reinforced Cement Paste. Cement and Concrete Composites, 132, Article ID: 104603.
>https://doi.org/10.1016/j.cemconcomp.2022.104603
Fu, Q., Xu, W., Bu, M., Guo, B. and Niu, D. (2021) Orthogonal Experimental Study on Hybrid-Fiber High-Durability Concrete for Marine Environment. Journal of Materials Research and Technology, 13, 1790-1804.
>https://doi.org/10.1016/j.jmrt.2021.05.088
龚建清, 林立. 氧化石墨烯/碳纳米管水泥基复合材料的抗冻性研究[J]. 硅酸盐通报, 2018, 37(11): 3410-3415.
Zhao, L., Hou, D., Wang, P., Guo, X., Zhang, Y., Liu, J., et al. (2020) Experimental and Molecular Dynamics Studies on the Durability of Sustainable Cement-Based Composites: Reinforced by Graphene. Construction and Building Materials, 257, Article ID: 119566.
>https://doi.org/10.1016/j.conbuildmat.2020.119566
李相国, 任钊锋, 徐朋辉, 等. 氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J]. 硅酸盐通报, 2018, 37(1): 245-250.