References
Liu, H. and Qiu, J. (2015) Finite Difference Hermite WENO Schemes for Conservation Laws, II: An Alternative Approach. Journal of Scientific Computing, 66, 598-624. >https://doi.org/10.1007/s10915-015-0041-4
Shu, C. and Osher, S. (1988) Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes. Journal of Computational Physics, 77, 439-471. >https://doi.org/10.1016/0021-9991(88)90177-5
Harten, A. (1983) High Resolution Schemes for Hyperbolic Conservation Laws. Journal of Computational Physics, 49, 357-393. >https://doi.org/10.1016/0021-9991(83)90136-5
Harten, A., Engquist, B., Osher, S. and Chakravarthy, S.R. (1987) Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III. Journal of Computational Physics, 71, 231-303. >https://doi.org/10.1016/0021-9991(87)90031-3
Harten, A. (1987) Preliminary Results on the Extension of Eno Schemes to Two-Dimensional Problems. In: Morel, J.-M., Teissier, B., et al., Eds., Lecture Notes in Mathematics, Springer, 23-40. >https://doi.org/10.1007/bfb0078315
Casper, J. (1992) Finite-Volume Implementation of High-Order Essentially Nonoscillatory Schemes in Two Dimensions. AIAA Journal, 30, 2829-2835. >https://doi.org/10.2514/3.11625
Casper, J. and Atkins, H.L. (1993) A Finite-Volume High-Order ENO Scheme for Two-Dimensional Hyperbolic Systems. Journal of Computational Physics, 106, 62-76. >https://doi.org/10.1006/jcph.1993.1091
Shu, C.-W. and Osher, S. (1989) Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II. Journal of Computational Physics, 83, 32-78. >https://doi.org/10.1016/0021-9991(89)90222-2
Liu, X.-D., Osher, S. and Chan, T. (1994) Weighted Essentially Non-Oscillatory Schemes. Journal of Computational Physics, 115, 200-212. >https://doi.org/10.1006/jcph.1994.1187
Jiang, G.-S. and Shu, C.-W. (1996) Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126, 202-228. >https://doi.org/10.1006/jcph.1996.0130
Shu, C.-W. (2009) High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. SIAM Review, 51, 82-126. >https://doi.org/10.1137/070679065
Qiu, J.X. and Shu, C.-W. (2004) Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method: One-Dimensional Case. Journal of Computational Physics, 193, 115-135. >https://doi.org/10.1016/j.jcp.2003.07.026
Qiu, J.X. and Shu, C.-W. (2005) Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method II: Two Dimensional Case. Computers & Fluids, 34, 642-663. >https://doi.org/10.1016/j.compfluid.2004.05.005
Zhang, M. and Zhao, Z. (2023) A Fifth-Order Finite Difference HWENO Scheme Combined with Limiter for Hyperbolic Conservation Laws. Journal of Computational Physics, 472, Article 111676. >https://doi.org/10.1016/j.jcp.2022.111676
Liu, H.X. and Qiu, J.X. (2014) Finite Difference Hermite WENO Schemes for Hyperbolic Conservation Laws. Journal of Scientific Computing, 63, 548-572. >https://doi.org/10.1007/s10915-014-9905-2
Zhao, Z., Zhang, Y.-T. and Qiu, J.X. (2020) A Modified Fifth Order Finite Difference Hermite WENO Scheme for Hyperbolic Conservation Laws. Journal of Scientific Computing, 85, Article No. 29. >https://doi.org/10.1007/s10915-020-01347-1
Ma, Z. and Wu, S.-P. (2018) HWENO Schemes Based on Compact Differencefor Hyperbolic Conservation Laws. Journal of Scientific Computing, 76, 1301-1325. >https://doi.org/10.1007/s10915-018-0663-4
Tao, Z.J., Li, F.Y. and Qiu, J.X. (2016) High-Order Central Hermite WENO Schemes: Dimension-by-Dimension Moment-Based Reconstructions. Journal of Computational Physics, 318, 222-251. >https://doi.org/10.1016/j.jcp.2016.05.005
Zhao, Z., Chen, Y.B. and Qiu, J.X. (2020) A Hybrid Hermite WENO Scheme for Hyperbolic Conservation Laws. Journal of Computational Physics, 405, Article 109175. >https://doi.org/10.1016/j.jcp.2019.109175
Zhu, J. and Qiu, J.X. (2008) A Class of the Fourth Order Finite Volume Hermite Weighted Essentially Non-Oscillatory Schemes. Science in China Series A: Mathematics, 51, 1549-1560. >https://doi.org/10.1007/s11425-008-0105-0
Basdevant, C., Deville, M., Haldenwang, P., Lacroix, J.M., Ouazzani, J., Peyret, R., et al. (1986) Spectral and Finite Difference Solutions of the Burgers Equation. Computers & Fluids, 14, 23-41. >https://doi.org/10.1016/0045-7930(86)90036-8
Kurganov, A. and Tadmor, E. (2000) New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. Journal of Computational Physics, 160, 241-282. >https://doi.org/10.1006/jcph.2000.6459