<xref></xref>Table 1. The statistics of the dataset evaluated in this paperTable 1. The statistics of the dataset evaluated in this paper 表1. 本文评估的数据集的统计
<xref></xref>Table 2. Evaluation results of the MPC comprehension task. Bold numbers indicate the best performance. Empty cells indicate that the values are not computable. The SOTA for the ED task is SPCL-CL-ERCTable 2. Evaluation results of the MPC comprehension task. Bold numbers indicate the best performance. Empty cells indicate that the values are not computable. The SOTA for the ED task is SPCL-CL-ERC 表2. MPC理解任务的评价结果。粗体数字表示结果达到最佳性能。空单元表示它们的不可计算性。ED任务的SOTA是SPCL-CL-ERC
<xref></xref>Table 3. Evaluation results of the MPC generation task. Bold numbers indicate the results achieved the best performance. S-BLEU stands for SacreBLEU. Empty cells indicate that the values are not computableTable 3. Evaluation results of the MPC generation task. Bold numbers indicate the results achieved the best performance. S-BLEU stands for SacreBLEU. Empty cells indicate that the values are not computable 表3. MPC生成任务的评估结果。粗体数字表示结果达到了最佳性能。S-BLEU是SacreBLEU的缩写。空的单元格表示它们的不可计算性
References
Open AI (2022) Introducing ChatGPT.
Open AI (2023) GPT-4 Technical Report. arXiv: 2303.08774.
Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., et al. (2020) Language Models Are Few-Shot Learners. Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, 6-12 December 2020, Virtual.
Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., et al. (2023) Sparks of Artificial General Intelligence: Early Experiments with GPT-4.
Qin, C.W., Zhang, A., Zhang, Z.S., et al. (2023) Is ChatGPT a General-Purpose Natural Language Processing Task Solver?
Wang, J., Liang, Y., Meng, F., Sun, Z., Shi, H., Li, Z., et al. (2023). Is ChatGPT a Good NLG Evaluator? A Preliminary Study. Proceedings of the 4th New Frontiers in Summarization Workshop, Singapore, December 2023, 1-11. >https://doi.org/10.18653/v1/2023.newsum-1.1
Goertzel, B. (2014) Artificial General Intelligence: Concept, State of the Art, and Future Prospects. Journal of Artificial General Intelligence, 5, 1-48. >https://doi.org/10.2478/jagi-2014-0001
Ouyang, L., Wu, J., Mishkin, P., Zhang, C., et al. (2022) Training Language Models to Follow Instructions with Human Feedback.
Cui, L., Wu, Y., Liu, S., Zhang, Y. and Zhou, M. (2020) Mutual: A Dataset for Multi-Turn Dialogue Reasoning. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, July 2020, 1406-1416. >https://doi.org/10.18653/v1/2020.acl-main.130
Sun, W., Yan, L., Ma, X., Wang, S., Ren, P., Chen, Z., et al. (2023) Is ChatGPT Good at Search? Investigating Large Language Models as Re-Ranking Agents. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, December 2023, 14918-14937. >https://doi.org/10.18653/v1/2023.emnlp-main.923
Tan, C., Gu, J. and Ling, Z. (2023) Is ChatGPT a Good Multi-Party Conversation Solver? Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 2023, 4905-4915. >https://doi.org/10.18653/v1/2023.findings-emnlp.326
Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., et al. (2022) PaLM: Scaling Language Modeling with Pathways.
Touvron, H., Lavril, T., Izacard, G., Martinet, X., et al. (2023) Llama: Open and Efficient Foundation Language Models.
Wei, J., Tay, Y., Bommasani, R., Raffel, C., et al. (2022) Emergent Abilities of Large Language Models.
Wang, Y.Z., Kordi, Y., Mishra, S., Liu, A., et al. (2023) Self-Instruct: Aligning Language Model with Self-Generated Instructions. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, ACL 2023, (Volume 1: Long Papers), Toronto, 9-14 July 2023, 13484-13508.
Peng, B.L., Li, C.Y., He, P.C., et al. (2023) Instruction Tuning with GPT-4.
Chung, H.W., Hou, L., Longpre, S., Zoph, B., et al. (2022) Scaling Instruction-Finetuned Language Models.
Taori, R., Gulrajani, I., Zhang, T.Y., Dubois, Y., et al. (2023) Stanford Alpaca: An Instruction-Following Llama Model. >https://github.com/tatsu-lab/stanford_alpaca
Liu, Y., Iter, D., Xu, Y., Wang, S., Xu, R. and Zhu, C. (2023) G-Eval: NLG Evaluation Using GPT-4 with Better Human Alignment. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Singapore, December 2020, 2511-2522. >https://doi.org/10.18653/v1/2023.emnlp-main.153
Zheng, S., Huang, J. and Chang, K.C.-C. (2023) Why Does ChatGPT Fall Short in Answering Questions Faithfully?
Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., et al. (2024) A Survey on Large Language Model Based Autonomous Agents. Frontiers of Computer Science, 18, Article 186345. >https://doi.org/10.1007/s11704-024-40231-1
Zahiri, S.M. and Choi, J.D. (2018) Emotion Detection on TV Show Transcripts with Sequence-Based Convolutional Neural Networks. The Workshops of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, 2-7 February 2018, 44-52.
Willcox, G. (1982) The Feeling Wheel. Transactional Analysis Journal, 12, 274-276. >https://doi.org/10.1177/036215378201200411
Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E. and Mihalcea, R. (2019) MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, July 2019, 527-536. >https://doi.org/10.18653/v1/p19-1050
Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019) BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, 2-7 June 2019, 4171-4186.
Radford, A., Wu, J., Child, R., Luan, D., et al. (2019) Language Models Are Unsupervised Multitask Learners. Open AI Blog.
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., et al. (2020) BART: Denoising Sequence-to-Sequence Pre-Training for Natural Language Generation, Translation, and Comprehension. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, Ju8ly 2020, 7871-7880. >https://doi.org/10.18653/v1/2020.acl-main.703
Song, X., Huang, L., Xue, H. and Hu, S. (2022) Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, December 2020, 5197-5206. >https://doi.org/10.18653/v1/2022.emnlp-main.347
Loshchilov, I. and Hutter, F. (2017). Fixing Weight Decay Regularization in Adam. ArXiv: 1711.05101.