<xref></xref>Table 2. Parameter performance of different loss functions across the three categoriesTable 2. Parameter performance of different loss functions across the three categories 表2. 不同损失函数在三种类别上的参数表现
<xref></xref>Table 3. Results of model parameters using different optimization methodsTable 3. Results of model parameters using different optimization methods 表3. 使用不同优化方法的模型参数结果
<xref></xref>Table 4. Parameter performance of different models in the CIN tri-classification taskTable 4. Parameter performance of different models in the CIN tri-classification task 表4. 不同模型在CIN三分类任务中的参数表现
References
Mattiuzzi, C. and Lippi, G. (2019) Cancer Statistics: A Comparison between World Health Organization (WHO) and Global Burden of Disease (GBD). European Journal of Public Health, 30, 1026-1027.
>https://doi.org/10.1093/eurpub/ckz216
Rowland, A.G. and Brady, J. (2020) Colposcopy and Cervical Intraepithelial Neoplasia. Obstetrics, Gynaecology&Reproductive Medicine, 30, 133-138.
>https://doi.org/10.1016/j.ogrm.2020.02.008
Waghe, T. and Acharya, N. (2024) Advancements in the Management of Cervical Intraepithelial Neoplasia: A Comprehensive Review. Cureus, 16, e58645.
>https://doi.org/10.7759/cureus.58645
Xue, P., Ng, M.T.A. and Qiao, Y. (2020) The Challenges of Colposcopy for Cervical Cancer Screening in LMICs and Solutions by Artificial Intelligence. BMC Medicine, 18, Article No. 169.
>https://doi.org/10.1186/s12916-020-01613-x
Dong, S., Wang, P. and Abbas, K. (2021) A Survey on Deep Learning and Its Applications. Computer Science Review, 40, Article 100379.
>https://doi.org/10.1016/j.cosrev.2021.100379
Kather, J.N., Weis, C., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T., et al. (2016) Multi-Class Texture Analysis in Colorectal Cancer Histology. Scientific Reports, 6, Article No. 27988.
>https://doi.org/10.1038/srep27988
Lundervold, A.S. and Lundervold, A. (2019) An Overview of Deep Learning in Medical Imaging Focusing on MRI. Zeitschrift für Medizinische Physik, 29, 102-127.
>https://doi.org/10.1016/j.zemedi.2018.11.002
Nogales, A., García-Tejedor, Á.J., Monge, D., Vara, J.S. and Antón, C. (2021) A Survey of Deep Learning Models in Medical Therapeutic Areas. Artificial Intelligence in Medicine, 112, Article 102020.
>https://doi.org/10.1016/j.artmed.2021.102020
Zhang, T., Luo, Y., Li, P., Liu, P., Du, Y., Sun, P., et al. (2020) Cervical Precancerous Lesions Classification Using Pre-Trained Densely Connected Convolutional Networks with Colposcopy Images. Biomedical Signal Processing and Control, 55, Article 101566.
>https://doi.org/10.1016/j.bspc.2019.101566
Miyagi, Y., Takehara, K., Nagayasu, Y. and Miyake, T. (2019) Application of Deep Learning to the Classification of Uterine Cervical Squamous Epithelial Lesion from Colposcopy Images Combined with HPV Types. Oncology Letters, 75, Article 103589.
>https://doi.org/10.3892/ol.2019.11214
Saini, S.K., Bansal, V., Kaur, R. and Juneja, M. (2020) Colponet for Automated Cervical Cancer Screening Using Colposcopy Images. Machine Vision and Applications, 31, Article No. 15.
>https://doi.org/10.1007/s00138-020-01063-8
Liu, L., Wang, Y., Liu, X., Han, S., Jia, L., Meng, L., et al. (2021) Computer-aided Diagnostic System Based on Deep Learning for Classifying Colposcopy Images. Annals of Translational Medicine, 9, 1045-1045.
>https://doi.org/10.21037/atm-21-885
Chen, J., Li, P., Xu, T., Xue, H., Wang, X., Li, Y., et al. (2022) Detection of Cervical Lesions in Colposcopic Images Based on the Retinanet Method. Biomedical Signal Processing and Control, 75, Article 103589.
>https://doi.org/10.1016/j.bspc.2022.103589
Zhang, X. and Zhao, S. (2018) Cervical Image Classification Based on Image Segmentation Preprocessing and a Capsnet Network Model. International Journal of Imaging Systems and Technology, 29, 19-28.
>https://doi.org/10.1002/ima.22291
Xu, T., Li, P. and Wang, X. (2021) Cervical Lesions Classification Based on Pre-Trained Mobilenet Model. 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, 29-31 October 2021, 93-96.
>https://doi.org/10.1109/asid52932.2021.9651726
Moghtaderi, S., Yaghoobian, O., Wahid, K.A. and Lukong, K.E. (2024) Endoscopic Image Enhancement: Wavelet Transform and Guided Filter Decomposition-Based Fusion Approach. Journal of Imaging, 10, Article 28.
>https://doi.org/10.3390/jimaging10010028
Al-Stouhi, S. and Reddy, C.K. (2015) Transfer Learning for Class Imbalance Problems with Inadequate Data. Knowledge and Information Systems, 48, 201-228.
>https://doi.org/10.1007/s10115-015-0870-3
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 9992-10002.
>https://doi.org/10.1109/iccv48922.2021.00986
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R. (2012) Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors.
>https://doi.org/10.48550/arXiv.1207.0580
Srivastava, N. (2013) Improving Neural Networks with Dropout.
>https://api.semanticscholar.org/CorpusID:17084851
Hu, J., Shen, L. and Sun, G. (2018) Squeeze-and-Excitation Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 7132-7141.
>https://doi.org/10.1109/cvpr.2018.00745
Lin, T., Goyal, P., Girshick, R., He, K. and Dollar, P. (2020) Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327.
>https://doi.org/10.1109/tpami.2018.2858826
Mao, A., Mohri, M. and Zhong, Y. (2023) Cross-Entropy Loss Functions: Theoretical Analysis and Applications.
>https://doi.org/10.48550/arXiv.2304.07288
Smith, L.N. (2017) Cyclical Learning Rates for Training Neural Networks. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, 24-31 March 2017, 464-472.
>https://doi.org/10.1109/wacv.2017.58
Fawcett, T. (2006) An Introduction to ROC Analysis. Pattern Recognition Letters, 27, 861-874.
>https://doi.org/10.1016/j.patrec.2005.10.010
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778.
>https://doi.org/10.1109/cvpr.2016.90
Simonyan, K. and Zisserman, A. (2015) Very Deep Convolutional Networks for Large-Scale Image Recognition.
>http://arxiv.org/abs/1409.1556
Xie, S., Girshick, R., Dollar, P., Tu, Z. and He, K. (2017) Aggregated Residual Transformations for Deep Neural Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 5987-5995.
>https://doi.org/10.1109/cvpr.2017.634
Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017) Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 2261-2269.
>https://doi.org/10.1109/cvpr.2017.243
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., et al. (2021) An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
>https://doi.org/10.48550/arXiv.2010.11929