Figure 7. Enantioselective hydroxylation of 3-substituted-2-oxoindoles with molecular oxygen catalysed by phase transfer--图7. 3-取代-2氧化吲哚与分子氧在相转移催化下的对映选择性羟基化反应--
Figure 14. Asymmetric α‑hydroxylation of α‑aryl-δ-lactams with molecular oxygen under phase-transfer conditions--图14. 相转移条件下α-芳基-δ-内酰胺与分子氧的不对称α-羟基化反应--
2022年,Hilinski课题组
[20]
采用一种仲胺作为催化剂催化C−H羟基化的有机催化方法。并且证明了这种操作简单的催化策略在实现含氧化敏感官能团的化合物(如醇、醚、氨基甲酸酯和酰胺)的远端羟基化都具有高收率和高选择性(
图15
)。反应机制的初步研究表明,首先催化剂可以形成活性氧化剂氧杂氮丙啶鎓盐,然后在自由基协同下插入O原子与底物反应。胺类催化剂的结构会影响催化剂的选择性。所开发的催化方法特别适合于氧化敏感官能团化合物的远端羟基化,除了对伯醇和胺衍生物的羟基化观察到的高平均产率外,该工艺对仲醇的化学选择性远端羟基化(up to 99% ee)。
Figure 15. Amine Organocatalysis of Remote, Chemoselective C(sp3)−H Hydroxylation--图15. 胺类有机催化下的远端化学选择性C(sp3)−H羟基化--
References
Zhu, C., Lin, X., Wu, J. and Wei, Y. (2002) Chiral Separation of Several Drugs Using Electrophoresis with Dual Cyclodextrin Systems. Analytical Sciences, 18, 1055-1057.
>https://doi.org/10.2116/analsci.18.1055
Yanagisawa, A. (2012) 5.4 Oxidation: Α-Hydroxylation of Carbonyls. Comprehensive Chirality, 5, 118-136.
>https://doi.org/10.1016/b978-0-08-095167-6.00506-1
Christoffers, J., Baro, A. and Werner, T. (2004) α‐Hydroxylation of β‐Dicarbonyl Compounds. Advanced Synthesis&Catalysis, 346, 143-151.
>https://doi.org/10.1002/adsc.200303140
Chen, B.C., Zhou, P., Davis, F.A. and Ciganek, E. (2004) α‐Hydroxylation of Enolates and Silyl Enol Ethers. Organic Reactions, 62, 1-356.
Wasserman, H.H. and Lipshutz, B.H. (1975) Reactions of Lithium Enolates with Molecular Oxygen α-Hydroxylation of Amides and Other Carboxylate Derivatives. Tetrahedron Letters, 16, 1731-1734.
>https://doi.org/10.1016/s0040-4039(00)72245-3
Adam, W., Metz, M., Prechtl, F. and Renz, M. (1994) Facile Synthesis of α-Hydroxy Amides and Esters by Direct Autoxidation of Their Titanium Enolates. Synthesis, 1994, 563-566.
>https://doi.org/10.1055/s-1994-25524
Ding, W., Lu, L., Zhou, Q., Wei, Y., Chen, J. and Xiao, W. (2016) Bifunctional Photocatalysts for Enantioselective Aerobic Oxidation of β-Ketoesters. Journal of the American Chemical Society, 139, 63-66.
>https://doi.org/10.1021/jacs.6b11418
Yang, F., Zhao, J., Tang, X., Zhou, G., Song, W. and Meng, Q. (2017) Enantioselective α-Hydroxylation by Modified Salen-Zirconium(IV)-Catalyzed Oxidation of β-Keto Esters. Organic Letters, 19, 448-451.
>https://doi.org/10.1021/acs.orglett.6b03554
Shah, S.S., Paul, A., Bera, M., Venkatesh, Y. and Singh, N.D.P. (2018) Metallaphotoredox-Mediated C
sp2-H Hydroxylation of Arenes under Aerobic Conditions. Organic Letters, 20, 5533-5536.
>https://doi.org/10.1021/acs.orglett.8b01973
Sun, Q. and Sun, W. (2020) Catalytic Enantioselective Methylene C(sp
3)-H Hydroxylation Using a Chiral Manganese Complex/Carboxylic Acid System. Organic Letters, 22, 9529-9533.
>https://doi.org/10.1021/acs.orglett.0c03585
Wartmann, C., Nandi, S., Neudörfl, J. and Berkessel, A. (2023) Titanium Salalen Catalyzed Enantioselective Benzylic Hydroxylation. Angewandte Chemie International Edition, 62, e202306584.
>https://doi.org/10.1002/anie.202306584
Sano, D., Nagata, K. and Itoh, T. (2008) Catalytic Asymmetric Hydroxylation of Oxindoles by Molecular Oxygen Using a Phase-Transfer Catalyst. Organic Letters, 10, 1593-1595.
>https://doi.org/10.1021/ol800260r
Lian, M., Li, Z., Cai, Y., Meng, Q. and Gao, Z. (2012) Enantioselective Photooxygenation of β‐Keto Esters by Chiral Phase‐Transfer Catalysis Using Molecular Oxygen. Chemistry—An Asian Journal, 7, 2019-2023.
>https://doi.org/10.1002/asia.201200358
Miao, C., Wang, Y., Xing, M., Lu, X., Sun, X. and Yang, H. (2013) I
2-Catalyzed Direct α-Hydroxylation of β-Dicarbonyl Compounds with Atmospheric Oxygen under Photoirradiation. The Journal of Organic Chemistry, 78, 11584-11589.
>https://doi.org/10.1021/jo401866p
Sim, S.D., Wang, M. and Zhao, Y. (2015) Phase-Transfer-Catalyzed Enantioselective α-Hydroxylation of Acyclic and Cyclic Ketones with Oxygen. ACS Catalysis, 5, 3609-3612.
>https://doi.org/10.1021/acscatal.5b00583
Sheng, X., Zhang, J., Yang, H. and Jiang, G. (2017) Tunable Aerobic Oxidative Hydroxylation/Dehydrogenative Homocoupling of Pyrazol-5-Ones under Transition-Metal-Free Conditions. Organic Letters, 19, 2618-2621.
>https://doi.org/10.1021/acs.orglett.7b00951
Yang, Y., Li, Y., Cheng, C., Yang, G., Wan, S., Zhang, J., et al. (2019) Reductant-free Aerobic Hydroxylation of Isoquinoline-1,3(2h,4h)-Dione Derivatives. The Journal of Organic Chemistry, 84, 2316-2324.
>https://doi.org/10.1021/acs.joc.8b02977
Wang, Y., Lu, R., Yao, J. and Li, H. (2021) 1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene Enhances Activity of Peroxide Intermediates in Phosphine‐Free α‐hydroxylation of Ketones. Angewandte Chemie, 133, 6705-6712.
>https://doi.org/10.1002/ange.202014478
Inukai, T., Kano, T. and Maruoka, K. (2021) Asymmetric α-Hydroxylation of α-Aryl-δ-Lactams with Molecular Oxygen under Phase-Transfer Conditions. Organic Letters, 23, 792-796.
>https://doi.org/10.1021/acs.orglett.0c04022
Hahn, P.L., Lowe, J.M., Xu, Y., Burns, K.L. and Hilinski, M.K. (2022) Amine Organocatalysis of Remote, Chemoselective C(sp
3)-H Hydroxylation. ACS Catalysis, 12, 4302-4309.
>https://doi.org/10.1021/acscatal.2c00392
Cai, M., Xu, K., Jia, H., Zhang, L., Mi, X. and Luo, S. (2023) Visible Light-Promoted Enantioselective Aerobic Hydroxylation of β-Ketocarbonyls by Chiral Primary Amine Catalysis. ACS Catalysis, 13, 7538-7543.
>https://doi.org/10.1021/acscatal.3c01477