References
Wilairatana, P., Krudsood, S., Treeprasertsuk, S., Chalermrut, K. and Looareesuwan, S. (2002) The Future Outlook of Antimalarial Drugs and Recent Work on the Treatment of Malaria. Archives of Medical Research, 33, 416-421.
>https://doi.org/10.1016/s0188-4409(02)00371-5
Jew, S.S. and Park, H.G. (2009) Cinchona-Based Phase-Transfer Catalysts for Asymmetric Synthesis. Chemical Communications, 46, 7090-7103.
>https://doi.org/10.1039/b914028j
Hoffmann, H.M.R. and Frackenpohl, J. (2004) Cover Picture: Recent Advances in Cinchona Alkaloid Chemistry (Eur. J. Org. Chem. 21/2004). European Journal of Organic Chemistry, 2004, 4285-4285.
>https://doi.org/10.1002/ejoc.200490042
Franco, P., Klaus, P.M., Minguillón, C. and Lindner, W. (2001) Evaluation of the Contribution to Enantioselectivity of Quinine and Quinidine Scaffolds in Chemically and Physically Mixed Chiral Selectors. Chirality, 13, 177-186.
>https://doi.org/10.1002/chir.1017
Hoffmann, C.V., Pell, R., Lämmerhofer, M. and Lindner, W. (2008) Synergistic Effects on Enantioselectivity of Zwitterionic Chiral Stationary Phases for Separations of Chiral Acids, Bases, and Amino Acids by HPLC. Analytical Chemistry, 80, 8780-8789.
>https://doi.org/10.1021/ac801384f
Dolling, U.H., Davis, P. and Grabowski, E.J.J. (1984) Efficient Catalytic Asymmetric Alkylations. 1. Enantioselective Synthesis of (+)-Indacrinone via Chiral Phase-Transfer Catalysis. Journal of the American Chemical Society, 106, 446-447.
>https://doi.org/10.1021/ja00314a045
O’Donnell, M.J., Bennett, W.D. and Wu, S. (1989) The Stereoselective Synthesis of .alpha.-Amino Acids by Phase-Transfer Catalysis. Journal of the American Chemical Society, 111, 2353-2355.
>https://doi.org/10.1021/ja00188a089
Lygo, B. and Wainwright, P.G. (1997) A New Class of Asymmetric Phase-Transfer Catalysts Derived from Cinchona Alkaloids—Application in the Enantioselective Synthesis of α-Amino Acids. Tetrahedron Letters, 38, 8595-8598.
>https://doi.org/10.1016/s0040-4039(97)10293-3
Corey, E.J., Xu, F. and Noe, M.C. (1997) A Rational Approach to Catalytic Enantioselective Enolate Alkylation Using a Structurally Rigidified and Defined Chiral Quaternary Ammonium Salt under Phase Transfer Conditions. Journal of the American Chemical Society, 119, 12414-12415.
>https://doi.org/10.1021/ja973174y
Elango, S., Venugopal, M., Suresh, P.S. and Eni, (2005) Contrast Performance in Catalytic Ability—New Cinchona Phase Transfer Catalysts for Asymmetric Synthesis of α-Amino Acids. Tetrahedron, 61, 1443-1447.
>https://doi.org/10.1016/j.tet.2004.12.005
Jew, S., Jeong, B., Yoo, M., Huh, H. and Park, H. (2001) Synthesis and Application of Dimeric Cinchona Alkaloid Phase-Transfer Catalysts: α,α’-Bis[o(9)-Allylcinchonidinium]-O, M, or P-Xylene Dibromide. Chemical Communications, No. 14, 1244-1245.
>https://doi.org/10.1039/b102584h
Park, H.G., et al. (2002) Highly Enantioselective and Practical Cinchona-Derived Phase-Transfer Catalysts for the Synthesis of α-Amino Acids. Angewandte Chemie, 114, 3162-3164.
Hashimoto, T. and Maruoka, K. (2007) Recent Development and Application of Chiral Phase-Transfer Catalysts. Chemical Reviews, 107, 5656-5682.
>https://doi.org/10.1021/cr068368n
Jew, S., Yoo, M., Jeong, B., Park, I.Y. and Park, H. (2002) An Unusual Electronic Effect of an Aromatic-F in Phase-Transfer Catalysts Derived from Cinchona-Alkaloid. Organic Letters, 4, 4245-4248.
>https://doi.org/10.1021/ol0267679
Guillena, G., Kreiter, R., van de Coevering, R., Klein Gebbink, R.J.M., van Koten, G., Mazón, P., et al. (2003) Chiroptical Properties and Applications in PTC of New Dendritic Cinchonidine-Derived Ammonium Salts. Tetrahedron: Asymmetry, 14, 3705-3712.
>https://doi.org/10.1016/j.tetasy.2003.08.030
Lv, J., Zhang, L., Liu, L. and Wang, Y. (2007) A New Class of Acetophenone-Based Cinchona Alkaloids as Phase-Transfer Catalysts: Application to the Enantioselective Synthesis of α-Amino Acids. Chemistry Letters, 36, 1354-1355.
>https://doi.org/10.1246/cl.2007.1354
Zhang, S., He, W., Wang, Q., Wang, Q., Zhang, B. and Sun, X. (2009) Synthesis of Novel Chiral Phase-Transfer Catalysts and Their Application to Asymmetric Synthesis of α-Amino Acid Derivatives. Synlett, 2009, 1311-1314.
>https://doi.org/10.1055/s-0029-1216736
Majdecki, M., Niedbala, P. and Jurczak, J. (2019) Amide-Based Cinchona Alkaloids as Phase-Transfer Catalysts: Synthesis and Potential Application. Organic Letters, 21, 8085-8090.
>https://doi.org/10.1021/acs.orglett.9b03065
Hu, L., Wu, Y., Li, Z. and Deng, L. (2016) Catalytic Asymmetric Synthesis of Chiral γ-Amino Ketones via Umpolung Reactions of Imines. Journal of the American Chemical Society, 138, 15817-15820.
>https://doi.org/10.1021/jacs.6b09754
Roy, T.K., Parhi, B. and Ghorai, P. (2018) Cinchonamine Squaramide Catalyzed Asymmetric Aza‐Michael Reaction: Dihydroisoquinolines and Tetrahydropyridines. Angewandte Chemie International Edition, 57, 9397-9401.
>https://doi.org/10.1002/anie.201805020
Portolani, C., Centonze, G., Righi, P. and Bencivenni, G. (2022) Role of Cinchona Alkaloids in the Enantio-and Diastereoselective Synthesis of Axially Chiral Compounds. Accounts of Chemical Research, 55, 3551-3571.
>https://doi.org/10.1021/acs.accounts.2c00515
Iino, Y., Matsushima, Y., Nakashima, K., Hirashima, S. and Miura, T. (2024) Organocatalyzed Synthesis of γ-Alkenyl Butenolides via Asymmetric Direct Vinylogous Conjugate Addition-Elimination of Substituted Furanone Derivatives to β-Phenylsulfonylenones. The Journal of Organic Chemistry, 89, 11789-11795.
>https://doi.org/10.1021/acs.joc.4c01218
Haas, B.C., Lim, N., Jermaks, J., Gaster, E., Guo, M.C., Malig, T.C., et al. (2024) Enantioselective Sulfonimidamide Acylation via a Cinchona Alkaloid-Catalyzed Desymmetrization: Scope, Data Science, and Mechanistic Investigation. Journal of the American Chemical Society, 146, 8536-8546.
>https://doi.org/10.1021/jacs.4c00374