hjbm Hans Journal of Biomedicine 2161-8976 2161-8984 beplay体育官网网页版等您来挑战! 10.12677/hjbm.2025.152044 hjbm-110092 Articles 医药卫生 齐多夫定与干扰素-α联合治疗的应用与 研究进展
Application and Research Progress of Zidovudine and Interferon-α Combination Therapy
谭陈新 马广勇 中国药科大学多靶标天然药物全国重点实验室,江苏 南京 17 02 2025 15 02 377 388 21 2 :2025 13 2 :2025 13 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 干扰素-α (IFN-α)是一种具有抗病毒、抗肿瘤及免疫调节功能的细胞因子,而齐多夫定(AZT)则是首个获得批准的抗HIV逆转录酶抑制剂。两者的联合使用旨在通过协同作用增强抗病毒效果,但后续研究表明其疗效与毒性之间存在复杂的权衡关系。本文结合基础研究与临床数据,系统总结了齐多夫定的临床应用范围及其作用机制,干扰素-α的生物学功能及应用,以及齐多夫定与干扰素-α在不同疾病中的联合应用。此外,本文还探讨了齐多夫定与干扰素-α联合应用的潜在作用机制,以及相关争议与不足之处,并指出未来研究的重点方向。通过全面评述该联合治疗的科学价值与局限性,本文对齐多夫定与干扰素-α的联合应用展开深入探讨,阐明了其在抗病毒和抗肿瘤领域的重要价值,为后续联合治疗的研究方向提供新的思路。
Interferon-alpha (IFN-α) is a multifunctional cytokine renowned for its antiviral, antitumor, and immunomodulatory properties, while Zidovudine (AZT) stands as the first approved reverse transcriptase inhibitor targeting HIV. The combined use of these two agents aims to amplify antiviral efficacy through synergistic interactions; however, subsequent research has revealed a complex interplay between therapeutic benefits and toxicological trade-offs. This article systematically synthesizes foundational research and clinical data to delineate the scope of Zidovudine’s clinical applications and its mechanisms of action, the biological functions and therapeutic uses of Interferon-alpha, as well as the combined application of Zidovudine and Interferon-alpha across various diseases. Furthermore, this paper explores the potential mechanisms underlying the combined use of Zidovudine and Interferon-alpha, addresses ongoing controversies and limitations, and identifies key directions for future research. By comprehensively reviewing the scientific value and limitations of this combined treatment, this paper conducts an in-depth exploration of the combined application of zidovudine and interferon-α, clarifies its significant value in the fields of antiviral and antitumor therapies, and provides new insights for the research directions of subsequent combined treatments.
齐多夫定,干扰素-α,联合应用,研究进展
Zidovudine
Interferon-α Combined Application Research Progress
1. 引言

干扰素-α (IFN-α)作为一种多功能细胞因子,是机体在病毒入侵、细菌感染或受到其他免疫刺激时产生的一类糖蛋白,具有抗病毒、免疫调节以及抗肿瘤等多种生物学活性,在多种疾病的治疗中占据重要地位。齐多夫定(AZT)是一种核苷类逆转录酶抑制剂(NRTI),可通过竞争性抑制逆转录酶活性并终止病毒DNA链延伸,从而有效阻断人类免疫缺陷病毒(HIV)等逆转录病毒的体内复制。齐多夫定最初是作为抗逆转录病毒药物应用于艾滋病治疗,随着研究的深入,其在抗肿瘤领域的潜在价值逐渐被挖掘。IFN-α与AZT联合治疗的研究为众多疾病的治疗开辟了新的途径,尤其是对于成人T细胞白血病(ATL)患者,极大地提高了患者的生存率 [1] 。深入探究这一联合治疗方案,对于明确其治疗机制、疗效,进而指导临床实践具有至关重要的意义。

2. 齐多夫定的研究现状及应用 2.1. 齐多夫定的作用机制

齐多夫定属于核苷类逆转录酶抑制剂。在HIV感染细胞过程中,病毒的逆转录酶起着关键作用,它负责将病毒的单链RNA转录为双链DNA,这是病毒基因组整合入宿主细胞基因组的前提步骤。齐多夫定进入人体细胞后,首先在胸苷激酶、胸苷酸激酶和核苷二磷酸激酶等一系列激酶的作用下,被磷酸化为具有活性的三磷酸齐多夫定(ZDV-TP) [2] 。与天然底物三磷酸脱氧胸苷(dTTP)具有结构相似性,可通过竞争性结合逆转录酶活性位点发挥抑制作用。由于ZDV-TP缺乏DNA链延伸所必需的3'-OH基团,当它掺入到正在合成的DNA链中后,会导致DNA链的延伸终止,从而阻断了病毒的逆转录过程,抑制病毒的复制 [2] [3]

端粒酶是维持人类肿瘤和永生细胞活力所必需的,端粒短的肿瘤在端粒酶被抑制后可能被有效和快速地杀死 [4] 。端粒酶靶向癌症治疗受到了广泛关注,因为端粒酶几乎在所有癌细胞中都检测到,但在大多数正常组织中不表达 [5] 。AZT在肿瘤治疗中的应用主要基于其抑制端粒酶活性和诱导DNA损伤的能力。AZT通过抑制端粒酶活性,阻止肿瘤细胞端粒的延长,诱导细胞衰老和凋亡 [6] 。AZT在细胞内磷酸化后整合到DNA链中,导致DNA复制受阻,引发DNA损伤和细胞死亡 [4] [7] 。食管癌中端粒酶的活性升高,AZT处理可以显著降低TE-11细胞的端粒酶活性和G1/G0期细胞百分比,抑制细胞的增殖。除此之外,AZT还可以导致人食管癌细胞系TE-11细胞DNA损伤,并增强γ-H2A组蛋白家族成员X和磷酸化检查点激酶2的表达水平 [8] 。p53-Puma/Noxa/Bax通路和细胞周期停滞相关的p53-p21通路都参与了AZT诱导的肿瘤细胞抑制 [5] 。重要的是,非整倍体细胞对AZT诱导的细胞周期停滞(p53-p21)和DNA双链断裂(γ-H2AX)更敏感,而整倍体细胞对AZT诱导的细胞凋亡(p53-Puma/Bax/Noxa)更敏感 [5] 。AZT处理ATL细胞可以抑制端粒酶功能,诱导DNA双链断裂损伤信号,加速细胞衰老,还可以重新激活HTLV-1白血病细胞中的TP53转录 [9] 。携带野生型p53的ATL患者在AZT治疗后进入缓解期,但p53突变的患者没有反应,患者的疾病复发与选择携带突变失活p53的肿瘤克隆有关 [10] 。端粒酶活性可以被AZT所抑制,并且会被γ辐射增强,导致端粒缩短恢复速率减慢,DNA链断裂修复速率降低,U251细胞放射敏感性增加 [11] 。端粒酶活性和端粒长度可作为估计癌症放疗疗效的标志物,逆转录酶抑制剂(如AZT)在临床上可用作癌症放疗中的新放射增敏剂 [12]

2.2. 齐多夫定的临床应用

齐多夫定是抗HIV治疗的基础药物之一,随着对艾滋病发病机制的深入了解以及更多抗HIV药物的研发,目前艾滋病治疗通常采用AZT与其他抗逆转录病毒药物联合使用组成高效抗逆转录病毒治疗(HAART)方案。在HAART方案中,齐多夫定通过抑制HIV的逆转录过程,降低患者体内的病毒载量。大量临床研究表明,接受以齐多夫定为主的HAART治疗的患者,其体内HIV病毒载量显著下降。同时,患者的免疫功能得到改善,表现为CD4+ T淋巴细胞计数上升 [13] 。这使得患者发生机会性感染的风险明显降低,疾病进展得到有效延缓,生存质量和生存期都得到了显著提高 [13] 。此外,齐多夫定在预防HIV母婴传播方面也发挥着重要作用 [14] 。对于HIV阳性的孕妇,在孕期、分娩期及新生儿出生后合理使用齐多夫定,可以显著降低HIV从母亲传播给胎儿或新生儿的几率 [15] 。临床实践中,通过规范的母婴阻断方案,包括孕妇孕期服用齐多夫定、分娩时采用适当的干预措施以及新生儿出生后短期服用齐多夫定,母婴传播率可降至较低水平 [14] 。齐多夫定是推荐在怀孕期间给予的抗逆转录病毒药物之一。

对于人类T细胞白血病病毒1型(Human T Cell Leukemia Virus Type 1, HTLV-1),AZT在体外可以延缓HTLV-1转化的兔细胞系(F647a)的生长,并抑制正常外周血淋巴细胞与细胞系共培养的转化,预防兔HTLV-1病毒的感染 [16] 。AZT还以剂量依赖性方式显着抑制HTLV-1感染细胞的增殖,病毒RNA表达也明显降低,并且对人脐带血单核细胞(CBMC)几乎没有细胞毒性 [17] 。在感染HTLV-1时给予AZT治疗,还可以阻止HTLV-1向外周血单核细胞(PBMC)传播,对PBMC具有显著的保护作用 [18]

除了病毒感染外,齐多夫定在其他疾病治疗方面也有一些潜在的探索。目前这方面的研究大多处于实验室或小规模临床试验阶段,尚未形成成熟的治疗方案。乳腺癌细胞长期暴露于AZT可能诱导衰老表型并降低肿瘤细胞致瘤性,小鼠的肿瘤发生率降低,存活时间延长 [19] 。除此之外,AZT在临床上也可用于食管癌的治疗,其在体外可以有效抑制人食管癌细胞系的生长 [8] 。AZT还可以提高癌症对化疗的敏感性。例如,AZT通过抑制Akt-GSK3β-Snail通路使吉西他滨耐药的胰腺癌细胞对吉西他滨重新敏感,抑制耐药胰腺癌的肿瘤形成,诱导上皮–间充质转化(EMT)样表型和并下调人平衡核苷转运蛋白1 (hENT1)的表达 [20]

齐多夫定在发挥治疗作用时,对机体的线粒体功能也会产生毒性反应。线粒体是细胞的能量工厂,拥有自身的DNA (mtDNA),且线粒体DNA的复制依赖于线粒体DNA聚合酶γ [21] 。研究发现,高剂量或长期使用齐多夫定,其三磷酸化产物ZDV-TP可抑制线粒体DNA聚合酶γ的活性。这会干扰线粒体DNA的正常复制,导致线粒体功能障碍 [22] - [25] 。体外和动物实验表明,AZT处理会导致心肌线粒体(mtDNA)、mtRNA和线粒体多肽合成减少 [22] ,抑心脏线粒体中ADP/ATP逆向转运 [26] 。而且齐多夫定与去达肌苷(ddI)和扎西他滨(ddC)相比,对细胞的线粒体功能抑制更强 [27] 。AZT处理还导致线粒体脂质过氧化和线粒体谷胱甘肽氧化增加,但补充抗氧化维生素C和E可以防止线粒体氧化应激 [28]

3. 干扰素-α 3.1. 干扰素-α的生物学特性

干扰素-α本身具有直接抑制病毒复制的作用。干扰素-α与细胞表面的干扰素-α受体(IFNAR)结合后,激活Jak-STAT信号通路,诱导一系列抗病毒蛋白表达,如2'-5'寡腺苷酸合成酶(2'-5'OAS)、蛋白激酶R (PKR)和Mx蛋白等 [29] 。2'-5'OAS催化ATP生成2'-5'寡腺苷酸,激活RNaseL,降解病毒RNA;PKR磷酸化真核起始因子2α (eIF2α),抑制病毒蛋白合成;Mx蛋白干扰病毒核衣壳组装和脱壳,从而抑制病毒复制 [30] 。除此之外,干扰素-α还可以通过调节机体的免疫应答来杀死病毒感染的细胞。一方面,IFN-α通过增强免疫细胞功能促进抗原呈递细胞(如树突状细胞)的成熟,提升其抗原摄取、加工及呈递能力,进而激活T淋巴细胞与B淋巴细胞,协同增强细胞免疫与体液免疫应答。另一方面,它能调节自然杀伤细胞(NK细胞)活性,使其能更有效地杀伤病毒感染细胞 [31]

干扰素-α除了具有抗病毒作用外还具有抗肿瘤作用。干扰素-α通过诱导细胞周期停滞于G1期,抑制肿瘤细胞进入S期进行DNA合成,从而抑制肿瘤细胞增殖。还可上调生长抑制因子受体,增强生长抑制信号,如上调转化生长因子-β (TGF-β)受体,增强TGF-β对肿瘤细胞的生长抑制作用 [32] 。干扰素-α还可以激活细胞内凋亡信号通路,上调促凋亡蛋白(如Bax、Bid)表达,下调抗凋亡蛋白(如Bcl-2、Bcl-XL)表达,改变细胞内凋亡平衡,启动凋亡程序。同时,还能激活caspase家族蛋白酶,切割细胞内重要蛋白,导致肿瘤细胞凋亡 [33] 。众所周知肿瘤的生长依赖新生血管,干扰素-α可以抑制血管内皮生长因子(VEGF)等血管生成因子表达和活性,减少肿瘤血管生成。此外,干扰素-α还可以调节基质金属蛋白酶(MMPs)及其组织抑制剂(TIMPs)平衡,抑制肿瘤细胞对细胞外基质的降解和侵袭,限制肿瘤生长和转移 [34]

干扰素-α对机体还具有免疫调节作用。干扰素-α促进Th1细胞分化,增强Th1细胞分泌白细胞介素-2 (IL-2)、干扰素-γ (IFN-γ)等细胞因子,从而增强细胞免疫。同时抑制Th2细胞分化,减少IL-4、IL-5等细胞因子分泌,调节Th1/Th2细胞平衡,使其向Th1细胞优势方向偏移,利于机体对病毒感染和肿瘤的免疫防御 [35] 。干扰素-α促进B淋巴细胞活化、增殖,增强其产生抗体能力,提高体液免疫功能。除此之外,还可调节B淋巴细胞表面分子表达,影响其分化和成熟过程 [36] 。干扰素-α还具有增强巨噬细胞吞噬、抗原呈递及细胞毒性作用。激活巨噬细胞内一氧化氮合酶(iNOS),诱导产生一氧化氮(NO),增强对病原体和肿瘤细胞的杀伤作用 [37]

3.2. 干扰素-α的临床应用

干扰素-α是治疗慢性乙型肝炎的重要药物,可抑制乙肝病毒复制,调节免疫,促进乙肝e抗原(HBeAg)血清学转换,部分患者可实现乙肝表面抗原(HBsAg)清除 [38] 。在直接抗病毒药物(DAAs)应用前,干扰素-α联合利巴韦林是慢性丙型肝炎标准治疗方案,通过抑制病毒复制和调节免疫,使部分患者获得持续病毒学应答(SVR)。但该方案不良反应多、疗程长。DAAs出现后,干扰素-α应用减少,但对特殊人群(如合并肝硬化、对DAAs耐药)仍有应用价值 [39] 。单独使用叠氮胸苷虽然可以诱导EB病毒(EBV)阳性伯基特淋巴瘤(BL)细胞凋亡,但需要干扰素-α才可诱导人疱疹病毒8型(HHV-8)阳性原发性渗出性淋巴瘤(PEL)细胞凋亡 [40] 。还有研究表明,IFN通过阻止病毒Gag蛋白靶向质膜中的筏来抑制HTLV-1病毒的组装,证明了其抗病毒作用 [41] 。众所周知,细胞毒性T淋巴细胞(Cytotoxic T Lymphocyte, CTL)在清除病毒感染的细胞等方面发挥关键作用。HTLV-1感染个体对表达Tax蛋白的ATL细胞具有很强的CTL反应 [42] ,IFN可能诱导病毒抗原或主要组织相容性复合物分子的表达,以增强对HTLV-1感染细胞的CTL反应。不过最近的报告表明,HTLV-1通过诱导细胞因子信号转导抑制因子1 (SOCS1) [43] 、降低STING的K63连接泛素化 [44] 、与STAT竞争CBP/p300结合 [45] 等途径来逃避I型IFN抗病毒信号转导,可能阻止IFN-α发挥其抗病毒作用。对于这几年大爆发的新型冠状病毒肺炎(COVID-19),IFN-α在体外能够抑制SARS-CoV-2病毒复制 [46] ,SARS-CoV-2可能比许多其他人类致病病毒更敏感,可以作为针对COVID-19的潜在治疗方法,在感染早期治疗更有效果 [46] [47]

干扰素-α是治疗毛细胞白血病一线药物,可显著改善血液学指标,提高生存率 [48] 。通过抑制肿瘤细胞增殖、诱导凋亡及调节免疫发挥作用 [49] 。在酪氨酸激酶抑制剂(TKI)出现前,干扰素-α是慢性粒细胞白血病慢性期重要治疗药物,可诱导细胞遗传学缓解,延长生存期。目前虽然TKI为首选,但对不耐受或耐药患者,干扰素-α可作为替代 [50] 。干扰素-α还可以用于恶性黑色素瘤辅助治疗,降低复发风险,提高无病生存期和总生存期 [51]

4. 齐多夫定和干扰素-α的联合应用 4.1. 联合应用的可能理论基础

齐多夫定作为逆转录酶抑制剂,在体内可以阻断HIV的复制过程 [52] 。然而,长期使用齐多夫定可能会导致病毒产生耐药性,限制其治疗效果 [53] 。干扰素-α不仅可直接抑制病毒复制,还能通过调节免疫间接发挥抗病毒作用 [29] [30] 。但是病毒感染的细胞会对I型IFN产生耐药性。两者联合应用可以从不同环节、不同层面阻断病毒复制,理论上具有协同抗病毒效应,且可能降低病毒耐药性的产生。

干扰素-α对免疫系统具有广泛的调节作用。齐多夫定在抑制HIV复制的同时,也对免疫系统产生一定影响 [13] 。联合应用齐多夫定和干扰素-α,可能在免疫调节方面产生协同作用。干扰素-α增强的免疫功能有助于提高机体对肿瘤细胞的杀伤能力,而齐多夫定改善的免疫细胞数量和功能可能为干扰素-α的免疫调节作用提供更好的基础,AZT可能通过进一步提高IFN-α对机体的免疫激活能力来更有效地杀伤肿瘤。两者相互配合,有望能更加有效地恢复和增强机体的免疫防御系统。

4.2. 齐多夫定和干扰素-α联合在不同疾病中的应用

成人T细胞白血病(Adult T Cell Leukemia, ATL)是由人类T细胞白血病病毒1型病毒感染所引起的侵袭性血液系统恶性肿瘤 [54] 。尽管接受了积极的多药化疗,但生存率依旧很差。早期的一项临床研究表明,抗逆转录病毒药物齐多夫定和干扰素-α的组合成人T细胞白血病–淋巴瘤具有活性(58%的患者达到主要缓解),即使在既往细胞毒治疗失败的患者中也是如此 [55] 。一项荟萃分析显示,接受一线和联合AZT/IFN治疗的患者比单独接受AZT/IFN-α的患者反应更好,惰性疾病亚型患者的反应率远高于侵袭性疾病患者。干扰素-α和齐多夫定联合治疗是ATL患者的有效治疗方法,在疾病早期使用可能会产生更高的反应率 [56] 。与重度治疗的患者相比,新诊断的ATL患者使用这种组合会获得更高的反应率 [57] [58] 。在一项发展中国家ATL患者的临床研究中,AZT/IFN-α治疗不仅降低了HTLV-1前病毒载量而且降低了VEGF血浆水平,具有潜在的抗血管生成作用 [59] 。值得注意的是,有些ATL患者对该联合疗法无反应,在这些无反应的患者中IFN反应基因和抗原加工和呈递相关基因的表达是比较低的 [60] 。而且AZT/IFN-α抗病毒治疗对ATL的治疗不是治愈性的,需要持续地给药以防止复发。

有研究表明,AZT/IFN-α不是通过直接的细胞毒作用来杀死ATL细胞 [61] 。在分子水平上,AZT/IFN-α可以抑制HTLV-1逆转录酶活性,降低Tax/Rex转录本,减少p19释放,并能改变ATL患者应答的克隆性模式(从单克隆型转变为多克隆型) [62] 。IFN-α可能通过RNA依赖性蛋白激酶(PKR)介导的机制抑制HTLV-1基因表达,并诱导IL-2依赖性HTLV-1感染的T细胞(ILTs)周期停滞 [58] 。而且单独的AZT治疗不会影响HTLV-1基因表达、细胞活力或NF-κB活性。但是AZT与IFN-α结合会显着诱导ILTs中p53磷酸化和p53反应基因诱导相关的细胞凋亡 [63]

近年来,为了进一步提高治疗效果,研究人员开始探索IFN-α和AZT与其他药物联合使用的可能性。一项研究观察了砷(ATO)、干扰素-α和齐多夫定联合治疗10例新诊断的慢性ATL患者的疗效和安全性。居然得到令人印象深刻的100%反应率(包括7例完全缓解,2例完全缓解以及1例部分缓解),且治疗反应迅速,未发现复发 [64] 。AZT/IFN-α/ATO在恢复免疫活性微环境方面发挥重要作用(从Treg/Th2表型向Th1表型的转变)。ATO与IFN-α/AZT的组合在非Tax表达细胞系中的协同抗ATL作用,NF-κB通路可能参与其中,作用机制还需进一步深入研究 [65] 。由于AZT/IFN-α不能根除恶性ATLL克隆,侵袭型ATL患者最终还是会继续进展。组蛋白脱乙酰酶(HDAC)抑制剂会重新激活携带完整前病毒的ATL细胞中的潜在HTLV-1,从而有助于消除细胞减灭治疗后的残留病灶。一项临床研究在AZT/IFN-α维持治疗阶段添加丙戊酸(VPA),最终受试者的完全缓解(CR)率为33%,总体缓解率为42%。其中共有66%的患者出现血液学缓解,包括5例完全血液学缓解(38%)。1例受试者还惊喜地实现了ATL的分子缓解和清除,该受试者在2.5年后仍然保持无病状态,这是在以往临床研究中没有出现过的,表明这种组合有可能有助于推进ATL的治疗 [66]

早期研究尝试将齐多夫定和干扰素-α联合用于HIV感染患者的治疗。部分临床试验结果显示,联合治疗组在病毒载量下降幅度和CD4+ T细胞计数增加方面优于单一使用齐多夫定的治疗 [67] 。然而,也有研究指出,联合治疗可能会增加不良反应的发生率,如血液系统毒性、流感样症状等 [68] 。随着高效抗逆转录病毒治疗(HAART)方案的广泛应用,齐多夫定与干扰素-α联合在抗HIV治疗中的地位逐渐受到挑战 [69] ,但对于一些特定患者群体,如对传统HAART方案耐药或不耐受的患者,二者联合应用仍可能具有一定的探索价值 [70] 。卡波西肉瘤是HIV感染患者常见的机会性肿瘤。研究发现,干扰素-α可抑制卡波西肉瘤细胞的增殖和血管生成 [71] [72] 。齐多夫定通过控制HIV感染,改善患者免疫状态,也有助于卡波西肉瘤的治疗。一些小规模临床研究显示,齐多夫定和干扰素-α联合应用在HIV相关卡波西肉瘤的治疗中,可使部分患者的肿瘤病灶缩小,病情得到缓解 [68] 。但由于样本量较小,其确切疗效和安全性仍需进一步大规模临床试验验证。

慢性乙型肝炎由乙型肝炎病毒(HBV)持续感染引起,严重威胁人类健康。齐多夫定虽主要用于HIV治疗,但有研究发现其对HBV的复制也有一定抑制作用 [73] 。干扰素-α在慢性乙型肝炎治疗中可抑制HBV复制,促进e抗原血清学转换 [74] 。理论上,二者联合应用可能增强对HBV的抑制效果。然而,研究表明额外的齐多夫定治疗并未增强干扰素-α对慢性乙型肝炎的抗病毒作用 [75] 。联合疗法引起了相当大的副作用,导致齐多夫定和干扰素-α的剂量减少。对于与干扰素-α的联合治疗,目前已经开发了比齐多夫定具有更强抗病毒作用和更低毒性的口服核苷类似物,包括恩替卡韦(Entecavir)、替诺福韦酯(Tenofovir Disoproxil Fumarate, TDF)等。研究表明,应用干扰素α联合恩替卡韦治疗乙型病毒性肝炎,与单独使用恩替卡韦相比HBV DNA转阴、e抗原转换情况更优,可有效提升临床治疗效果 [76] 。干扰素α联合替诺福韦酯对高病毒载量慢性乙肝初治患者也具有显著的疗效,而且血清单核因子、调节活化正常T细胞表达和分泌的趋化因子均低于常规治疗组 [77]

慢性丙型肝炎由丙型肝炎病毒(HCV)感染所致的肝脏疾病。在直接抗病毒药物(DAAs)广泛应用之前,干扰素-α联合利巴韦林是标准治疗方案,其治愈率大约在40%~70%左右。与干扰素和利巴韦林治疗相比,DAAs的疗效更高,通常能够在较短的疗程内实现高治愈率,可以有效地促进肝纤维化逆转及肝功能改善 [78] [79] 。DDAs能够高效、特异地抑制HCV的复制,从而阻断病毒的传播和肝细胞的损伤。丙型肝炎病毒儿科患者在直接抗病毒药物治疗后肝脏的硬度也得到一定程度地改善 [80] 。齐多夫定与干扰素-α联合治疗慢性丙型肝炎的研究相对较少。有研究推测,齐多夫定可能通过调节免疫或抑制病毒复制相关环节,与干扰素-α协同发挥抗HCV作用,但目前缺乏充分的临床证据支持 [81] 。在DAAs时代,齐多夫定和干扰素-α联合治疗慢性丙型肝炎可能仅适用于特定难治性病例或存在DAAs使用禁忌的患者,需进一步探索其适用人群和治疗方案。

有研究表明,在接种Rauscher鼠白血病病毒(RLV)的小鼠中用AZT与IFN-α联合治疗允许每种药物的剂量大幅减少,同时还能保持大于或等于93%的病毒诱导的脾肿大抑制,且未见临床显着毒性 [82] 。逆转录病毒暴露后迅速开始有效的联合治疗可以预防病毒血症和疾病,并导致保护性免疫 [73] 。叠氮胸苷和干扰素-α通过诱导肿瘤坏死因子相关的凋亡诱导配体(TRAIL)介导的自杀程序诱导培养的HHV-8+/EBV-PEL细胞的凋亡,显著增加原发性渗出性淋巴瘤小鼠的平均存活时间(MST) [83]

4.3. 联合应用存在的争议与不足

虽然多项研究表明IFN-α和AZT联合治疗在部分患者中取得了显著疗效,但仍有部分患者对该治疗方案无反应 [56] 。不同研究中报道的疗效差异可能归因于患者个体异质性(如基因多态性、基础疾病状态)、研究样本量不足或治疗方案(如剂量、疗程)的异质性。关于IFN-α和AZT的最佳剂量、给药频率以及治疗周期等,目前尚未达成共识。不同研究采用的剂量和方案有所不同,这使得临床医生在实际应用中难以选择最佳的治疗方案。IFN-α和AZT单独应用时可能会带来一些副作用,联合使用时这些副作用可能会加重,影响患者的生活质量和治疗依从性。然而,不同研究中对副作用的评估标准和观察时间不同,导致对联合治疗安全性的评估存在一定差异。最主要的是目前还没有研究对IFN-α与AZT联合治疗疾病的具体作用机制进行全面的阐述。填补这些空白,将为IFN-α与AZT联合治疗疾病的优化及拓展临床应用提供坚实的理论基础。

5. 总结与展望

本文总结了齐多夫定的作用机制和临床应用,干扰素-α的生物学功能和应用,齐多夫定与干扰素-α联合在不同疾病中的应用。此外,本文还探讨了齐多夫定与干扰素-α联合应用可能的作用机制以及存在的争议和不足。

未来可以寻找与IFN-α和AZT具有协同作用的其他药物,如结合肿瘤免疫治疗进展,探索与免疫检查点抑制剂联合使用,增强抗肿瘤免疫反应,提高治疗效果。系统研究IFN-α、AZT与其他联合药物的最佳联合顺序和治疗时间间隔。不同用药顺序和时间影响药物协同作用和对肿瘤细胞的杀伤效果,通过临床前研究和临床试验确定最优化联合用药模式。除此之外,我们还需要深入探索IFN-α和AZT联合治疗有效以及耐药背后的作用机制。一方面,我们可以进一步研究联合治疗对细胞内多条信号通路的影响及其交互作用。虽然目前对部分信号通路有所了解,但仍有未知环节,如联合治疗对细胞内代谢信号通路的影响及与细胞凋亡、增殖等过程的关联,为开发新治疗靶点提供依据。另一方面,我们还可以深入解析联用的免疫调节机制。研究IFN-α和AZT联合治疗如何调节机体免疫反应,包括对固有免疫和适应性免疫的影响,以及克服肿瘤免疫逃逸机制。

干扰素-α与齐多夫定联合治疗在多种疾病治疗中取得一定成果,但在疗效稳定性、最佳治疗方案及安全性、作用机制等方面存在争议。未来通过精准治疗策略探索、联合用药方案优化及作用机制深入研究,有望提升联合治疗效果,为更多患者带来临床获益。同时,还需要更多高质量、大规模的临床研究和基础研究推动该领域发展。

致 谢

我们感谢为这篇文章作出贡献的每一个人。

NOTES

*通讯作者。

References Bazarbachi, A., Plumelle, Y., Carlos Ramos, J., Tortevoye, P., Otrock, Z., Taylor, G., et al. (2010) Meta-Analysis on the Use of Zidovudine and Interferon-Alfa in Adult T-Cell Leukemia/Lymphoma Showing Improved Survival in the Leukemic Subtypes. Journal of Clinical Oncology, 28, 4177-4183. >https://doi.org/10.1200/jco.2010.28.0669 Mitsuya, H., Weinhold, K.J., Furman, P.A., St Clair, M.H., Lehrman, S.N., Gallo, R.C., et al. (1985) 3’-Azido-3’-Deoxythymidine (BW A509U): An Antiviral Agent That Inhibits the Infectivity and Cytopathic Effect of Human T-Lymphotropic Virus Type III/Lymphadenopathy-Associated Virus in Vitro. Proceedings of the National Academy of Sciences of the United States of America, 82, 7096-7100. >https://doi.org/10.1073/pnas.82.20.7096 Stambuk, D., Youle, M., Hawkins, D., et al. (1989) The Efficacy and Toxicity of Azidothymidine (AZT) in the Treatment of Patients with AIDS and AIDS-Related Complex (ARC): An Open Uncontrolled Treatment Study. The Quarterly Journal of Medicine, 262, 161-174. Zhang, X., Mar, V., Zhou, W., Harrington, L. and Robinson, M.O. (1999) Telomere Shortening and Apoptosis in Telomerase-Inhibited Human Tumor Cells. Genes&Development, 13, 2388-2399. >https://doi.org/10.1101/gad.13.18.2388 Fang, X., Hu, T., Yin, H., Yang, J., Tang, W., Hu, S., et al. (2017) Differences in Telomerase Activity and the Effects of AZT in Aneuploid and Euploid Cells in Colon Cancer. International Journal of Oncology, 51, 525-532. >https://doi.org/10.3892/ijo.2017.4043 Gomez, D.E., Tejera, A.M. and Olivero, O.A. (1998) Irreversible Telomere Shortening by 3’-Azido-2’,3’-Dideoxythymidine (AZT) Treatment. Biochemical and Biophysical Research Communications, 246, 107-110. >https://doi.org/10.1006/bbrc.1998.8555 Gomez, D.E., Armando, R.G. and Alonso, D.F. (2012) AZT as a Telomerase Inhibitor. Frontiers in Oncology, 2, Article 113. >https://doi.org/10.3389/fonc.2012.00113 Wang, H., Zhou, J., He, Q., Dong, Y. and Liu, Y. (2017) Azidothymidine Inhibits Cell Growth and Telomerase Activity and Induces DNA Damage in Human Esophageal Cancer. Molecular Medicine Reports, 15, 4055-4060. >https://doi.org/10.3892/mmr.2017.6549 Datta, A. and Nicot, C. (2007) Telomere Attrition Induces a DNA Double-Strand Break Damage Signal That Reactivates P53 Transcription in HTLV-I Leukemic Cells. Oncogene, 27, 1135-1141. >https://doi.org/10.1038/sj.onc.1210718 Datta, A., Bellon, M., Sinha-Datta, U., Bazarbachi, A., Lepelletier, Y., Canioni, D., et al. (2006) Persistent Inhibition of Telomerase Reprograms Adult T-Cell Leukemia to P53-Dependent Senescence. Blood, 108, 1021-1029. >https://doi.org/10.1182/blood-2006-01-0067 Zhou, F., Liao, Z., Dai, J., Xiong, J., Xie, C., Luo, Z., et al. (2007) Radiosensitization Effect of Zidovudine on Human Malignant Glioma Cells. Biochemical and Biophysical Research Communications, 354, 351-356. >https://doi.org/10.1016/j.bbrc.2006.12.180 Ji, X., Xie, C., Fang, M., Zhou, F., Zhang, W., Zhang, M., et al. (2006) Efficient Inhibition of Human Telomerase Activity by Antisense Oligonucleotides Sensitizes Cancer Cells to Radiotherapy. Acta Pharmacologica Sinica, 27, 1185-1191. >https://doi.org/10.1111/j.1745-7254.2006.00417.x Fischl, M.A., Richman, D.D., Grieco, M.H., Gottlieb, M.S., Volberding, P.A., Laskin, O.L., et al. (1987) The Efficacy of Azidothymidine (AZT) in the Treatment of Patients with AIDS and Aids-Related Complex. A Double-Blind, Placebo-Controlled Trial. New England Journal of Medicine, 317, 185-191. >https://doi.org/10.1056/nejm198707233170401 Connor, E.M., Sperling, R.S., Gelber, R., Kiselev, P., Scott, G., O’Sullivan, M.J., et al. (1994) Reduction of Maternal-Infant Transmission of Human Immunodeficiency Virus Type 1 with Zidovudine Treatment. New England Journal of Medicine, 331, 1173-1180. >https://doi.org/10.1056/nejm199411033311801 Sperling, R.S., Shapiro, D.E., Coombs, R.W., Todd, J.A., Herman, S.A., McSherry, G.D., et al. (1996) Maternal Viral Load, Zidovudine Treatment, and the Risk of Transmission of Human Immunodeficiency Virus Type 1 from Mother to Infant. New England Journal of Medicine, 335, 1621-1629. >https://doi.org/10.1056/nejm199611283352201 Isono, T., Ogawa, K. and Seto, A. (1990) Antiviral Effect of Zidovudine in the Experimental Model of Adult T Cell Leukemia in Rabbits. Leukemia Research, 14, 841-847. >https://doi.org/10.1016/0145-2126(90)90172-6 Zhang, J., Balestrieri, E., Grelli, S., Matteucci, C., Pagnini, V., D’Agostini, C., et al. (2001) Efficacy of 3’-Azido 3’deoxythymidine (AZT) in Preventing HTLV-1 Transmission to Human Cord Blood Mononuclear Cells. Virus Research, 78, 67-78. >https://doi.org/10.1016/s0168-1702(01)00285-4 Macchi, B., Grelli, S., Favalli, C., Mastino, A., Bonmassar, E., Faraoni, I., et al. (1997) AZT Inhibits the Transmission of Human T Cell Leukaemia/Lymphoma Virus Type I to Adult Peripheral Blood Mononuclear Cells in Vitro. Journal of General Virology, 78, 1007-1016. >https://doi.org/10.1099/0022-1317-78-5-1007 Tejera, A.M., Alonso, D.F., Gomez, D.E. and Olivero, O.A. (2001) Chronic in Vitro Exposure to 3’-Azido-2’, 3’-Dideoxythymidine Induces Senescence and Apoptosis and Reduces Tumorigenicity of Metastatic Mouse Mammary Tumor Cells. Breast Cancer Research and Treatment, 65, 93-99. >https://doi.org/10.1023/a:1006477730934 Namba, T., Kodama, R., Moritomo, S., Hoshino, T. and Mizushima, T. (2015) Zidovudine, an Anti-Viral Drug, Resensitizes Gemcitabine-Resistant Pancreatic Cancer Cells to Gemcitabine by Inhibition of the Akt-GSK3β-Snail Pathway. Cell Death&Disease, 6, e1795-e1795. >https://doi.org/10.1038/cddis.2015.172 Dong, L., Gopalan, V., Holland, O. and Neuzil, J. (2020) Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. International Journal of Molecular Sciences, 21, Article 7941. >https://doi.org/10.3390/ijms21217941 Lewis, W., Papoian, T., Gonzalez, B., et al. (1991) Mitochondrial Ultrastructural and Molecular Changes Induced by Zidovudine in Rat Hearts. Laboratory Investigation: A Journal of Technical Methods and Pathology, 2, 228-236. Lewis, W., Simpson, J.F. and Meyer, R.R. (1994) Cardiac Mitochondrial DNA Polymerase-γ Is Inhibited Competitively and Noncompetitively by Phosphorylated Zidovudine. Circulation Research, 74, 344-348. >https://doi.org/10.1161/01.res.74.2.344 Lewis, W. and Dalakas, M.C. (1995) Mitochondrial Toxicity of Antiviral Drugs. Nature Medicine, 1, 417-422. >https://doi.org/10.1038/nm0595-417 Barile, M., Valenti, D., Quagliariello, E. and Passarella, S. (1998) Mitochondria as Cell Targets of AZT (Zidovudine). General Pharmacology: The Vascular System, 31, 531-538. >https://doi.org/10.1016/s0306-3623(98)00041-x Valenti, D., Barile, M. and Passarella, S. (2000) AZT Inhibition of the ADP/ATP Antiport in Isolated Rat Heart Mitochondria. International Journal of Molecular Medicine, 6, 93-99. >https://doi.org/10.3892/ijmm.6.1.93 Benbrik, E., Chariot, P., Bonavaud, S., Ammi-Saı̈d, M., Frisdal, E., Rey, C., et al. (1997) Cellular and Mitochondrial Toxicity of Zidovudine (AZT), Didanosine (DDI) and Zalcitabine (DDC) on Cultured Human Muscle Cells. Journal of the Neurological Sciences, 149, 19-25. >https://doi.org/10.1016/s0022-510x(97)05376-8 García de la Asunción, J., L. del Olmo, M., Gómez-Cambronero, L.G., Sastre, J., Pallardó, F.V. and Viña, J. (2004) AZT Induces Oxidative Damage to Cardiac Mitochondria: Protective Effect of Vitamins C and E. Life Sciences, 76, 47-56. >https://doi.org/10.1016/j.lfs.2004.06.020 Darnell, J.E., Kerr, L.M. and Stark, G.R. (1994) Jak-stat Pathways and Transcriptional Activation in Response to IFNS and Other Extracellular Signaling Proteins. Science, 264, 1415-1421. >https://doi.org/10.1126/science.8197455 Williams, B.R. (1999) PKR; a Sentinel Kinase for Cellular Stress. Oncogene, 18, 6112-6120. >https://doi.org/10.1038/sj.onc.1203127 Trinchieri, G. (2003) Interleukin-12 and the Regulation of Innate Resistance and Adaptive Immunity. Nature Reviews Immunology, 3, 133-146. >https://doi.org/10.1038/nri1001 Garbe, C. and Krasagakis, K. (1993) Effects of Interferons and Cytokines on Melanoma Cells. Journal of Investigative Dermatology, 100, 239S-244S. >https://doi.org/10.1111/1523-1747.ep12465407 Gresser, I., Maury, C., Bandu, M., Foiret, D., Trojan, J. and Uriel, J. (1984) Inhibitory Effect of Mouse Interferon on the Growth of an Embryonal Carcinoma in Mice. Journal of Interferon Research, 4, 375-381. >https://doi.org/10.1089/jir.1984.4.375 Sherwood, L.M., Parris, E.E. and Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine, 285, 1182-1186. >https://doi.org/10.1056/nejm197111182852108 Mosmann, T.R. and Coffman, R.L. (1989) TH1 and TH2 Cells: Different Patterns of Lymphokine Secretion Lead to Different Functional Properties. Annual Review of Immunology, 7, 145-173. >https://doi.org/10.1146/annurev.iy.07.040189.001045 Jego, G., Palucka, A.K., Blanck, J., Chalouni, C., Pascual, V. and Banchereau, J. (2003) Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6. Immunity, 19, 225-234. >https://doi.org/10.1016/s1074-7613(03)00208-5 Nathan, C. and Shiloh, M.U. (2000) Reactive Oxygen and Nitrogen Intermediates in the Relationship between Mammalian Hosts and Microbial Pathogens. Proceedings of the National Academy of Sciences of the United States of America, 97, 8841-8848. >https://doi.org/10.1073/pnas.97.16.8841 Marcellin, P., Chang, T., Lim, S.G., Tong, M.J., Sievert, W., Shiffman, M.L., et al. (2003) Adefovir Dipivoxil for the Treatment of Hepatitis B e Antigen-Positive Chronic Hepatitis B. New England Journal of Medicine, 348, 808-816. >https://doi.org/10.1056/nejmoa020681 Ghany, M.G., Strader, D.B., Thomas, D.L. and Seeff, L.B. (2009) Diagnosis, Management, and Treatment of Hepatitis C: An Update. Hepatology, 49, 1335-1374. >https://doi.org/10.1002/hep.22759 Toomey, N.L., Deyev, V.V., Wood, C., Boise, L.H., Scott, D., Liu, L.H., et al. (2001) Induction of a TRAIL Mediated Suicide Program by Interferon α in Primary Effusion Lymphoma. Oncogene, 20, 7029-7040. >https://doi.org/10.1038/sj.onc.1204895 Feng, X., Vander Heyden, N. and Ratner, L. (2003) αInterferon Inhibits Human T-Cell Leukemia Virus Type 1 Assembly by Preventing Gag Interaction with Rafts. Journal of Virology, 77, 13389-13395. >https://doi.org/10.1128/jvi.77.24.13389-13395.2003 Daenke, S., Kermode, A.G., Hall, S.E., Taylor, G., Weber, J., Nightingale, S., et al. (1996) High Activated and Memory Cytotoxic T-Cell Responses to HTLV-1 in Healthy Carriers and Patients with Tropical Spastic Paraparesis. Virology, 217, 139-146. >https://doi.org/10.1006/viro.1996.0101 Olière, S., Hernandez, E., Lézin, A., Arguello, M., Douville, R., Nguyen, T.L., et al. (2010) HTLV-1 Evades Type I Interferon Antiviral Signaling by Inducing the Suppressor of Cytokine Signaling 1 (SOCS1). PLOS Pathogens, 6, e1001177. >https://doi.org/10.1371/journal.ppat.1001177 Wang, J., Yang, S., Liu, L., Wang, H. and Yang, B. (2017) HTLV-1 Tax Impairs K63-Linked Ubiquitination of STING to Evade Host Innate Immunity. Virus Research, 232, 13-21. >https://doi.org/10.1016/j.virusres.2017.01.016 Zhang, J., Yamada, O., Kawagishi, K., Araki, H., Yamaoka, S., Hattori, T., et al. (2008) Human T-Cell Leukemia Virus Type 1 Tax Modulates Interferon-Α Signal Transduction through Competitive Usage of the Coactivator CBP/p300. Virology, 379, 306-313. >https://doi.org/10.1016/j.virol.2008.06.035 Mantlo, E., Bukreyeva, N., Maruyama, J., Paessler, S. and Huang, C. (2020) Antiviral Activities of Type I Interferons to SARS-CoV-2 Infection. Antiviral Research, 179, Article ID: 104811. >https://doi.org/10.1016/j.antiviral.2020.104811 Sallard, E., Lescure, F., Yazdanpanah, Y., Mentre, F. and Peiffer-Smadja, N. (2020) Type 1 Interferons as a Potential Treatment against COVID-19. Antiviral Research, 178, Article ID: 104791. >https://doi.org/10.1016/j.antiviral.2020.104791 Quesada, J.R., Reuben, J., Manning, J.T., Hersh, E.M. and Gutterman, J.U. (1984) α Interferon for Induction of Remission in Hairy-Cell Leukemia. New England Journal of Medicine, 310, 15-18. >https://doi.org/10.1056/nejm198401053100104 Quesada, J., Hersh, E., Manning, J., Reuben, J., Keating, M., Schnipper, E., et al. (1986) Treatment of Hairy Cell Leukemia with Recombinant α-Interferon. Blood, 68, 493-497. >https://doi.org/10.1182/blood.v68.2.493.493 Hughes, T.P., Hochhaus, A., Branford, S., Müller, M.C., Kaeda, J.S., Foroni, L., et al. (2010) Long-Term Prognostic Significance of Early Molecular Response to Imatinib in Newly Diagnosed Chronic Myeloid Leukemia: An Analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood, 116, 3758-3765. >https://doi.org/10.1182/blood-2010-03-273979 Kirkwood, J.M., Ibrahim, J.G., Sosman, J.A., Sondak, V.K., Agarwala, S.S., Ernstoff, M.S., et al. (2001) High-Dose Interferon Alfa-2b Significantly Prolongs Relapse-Free and Overall Survival Compared with the GM2-KLH/QS-21 Vaccine in Patients with Resected Stage IIB-III Melanoma: Results of Intergroup Trial E1694/s9512/c509801. Journal of Clinical Oncology, 19, 2370-2380. >https://doi.org/10.1200/jco.2001.19.9.2370 St Clair, M.H., Richards, C.A., Spector, T., Weinhold, K.J., Miller, W.H., Langlois, A.J., et al. (1987) 3’-Azido-3’-Deoxythymidine Triphosphate as an Inhibitor and Substrate of Purified Human Immunodeficiency Virus Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 31, 1972-1977. >https://doi.org/10.1128/aac.31.12.1972 Larder, B.A., Darby, G. and Richman, D.D. (1989) HIV with Reduced Sensitivity to Zidovudine (AZT) Isolated during Prolonged Therapy. Science, 243, 1731-1734. >https://doi.org/10.1126/science.2467383 Zuo, X., Zhou, R., Yang, S. and Ma, G. (2022) HTLV‐1 Persistent Infection and ATLL Oncogenesis. Journal of Medical Virology, 95, e28424. >https://doi.org/10.1002/jmv.28424 Shafiee, A., Seighali, N., Taherzadeh-Ghahfarokhi, N., Mardi, S., Shojaeian, S., Shadabi, S., et al. (2023) Zidovudine and Interferon Alfa Based Regimens for the Treatment of Adult T-Cell Leukemia/Lymphoma (ATLL): A Systematic Review and Meta-Analysis. Virology Journal, 20, Article No. 118. >https://doi.org/10.1186/s12985-023-02077-0 Gill, P.S., Harrington, W., Kaplan, M.H., Ribeiro, R.C., Bennett, J.M., Liebman, H.A., et al. (1995) Treatment of Adult T-Cell Leukemia-Lymphoma with a Combination of Interferon Alfa and Zidovudine. New England Journal of Medicine, 332, 1744-1748. >https://doi.org/10.1056/nejm199506293322603 Matutes, E., Taylor, G.P., Cavenagh, J., Pagliuca, A., Bareford, D., Domingo, A., et al. (2001) Interferon Α and Zidovudine Therapy in Adult T‐Cell Leukaemia Lymphoma: Response and Outcome in 15 Patients. British Journal of Haematology, 113, 779-784. >https://doi.org/10.1046/j.1365-2141.2001.02794.x Hermine, O., Allard, I., Lévy, V., Arnulf, B., Gessain, A. and Bazarbachi, A. (2002) A Prospective Phase II Clinical Trial with the Use of Zidovudine and Interferon-α in the Acute and Lymphoma Forms of Adult T-Cell Leukemia/Lymphoma. The Hematology Journal, 3, 276-282. >https://doi.org/10.1038/sj.thj.6200195 Kchour, G., Makhoul, N.J., Mahmoudi, M., Kooshyar, M., Shirdel, A., Rastin, M., et al. (2007) Zidovudine and Interferon-α Treatment Induces a High Response Rate and Reduces HTLV-1 Proviral Load and VEGF Plasma Levels in Patients with Adult T-Cell Leukemia from North East Iran. Leukemia&Lymphoma, 48, 330-336. >https://doi.org/10.1080/10428190601071717 Alizadeh, A.A., Bohen, S.P., Lossos, C., Martinez-Climent, J.A., Ramos, J.C., Cubedo-Gil, E., et al. (2010) Expression Profiles of Adult T-Cell Leukemia-Lymphoma and Associations with Clinical Responses to Zidovudine and Interferon α. Leukemia&Lymphoma, 51, 1200-1216. >https://doi.org/10.3109/10428191003728628 Bazarbachi, A., Nasr, R., El-Sabban, M., Mahé, A., Mahieux, R., Gessain, A., et al. (2000) Evidence against a Direct Cytotoxic Effect of α Interferon and Zidovudine in HTLV-I Associated Adult T Cell Leukemia/Lymphoma. Leukemia, 14, 716-721. >https://doi.org/10.1038/sj.leu.2401742 Macchi, B., Balestrieri, E., Frezza, C., Grelli, S., Valletta, E., Marçais, A., et al. (2017) Quantification of HTLV-1 Reverse Transcriptase Activity in ATL Patients Treated with Zidovudine and Interferon-α. Blood Advances, 1, 748-752. >https://doi.org/10.1182/bloodadvances.2016001370 Kinpara, S., Kijiyama, M., Takamori, A., Hasegawa, A., Sasada, A., Masuda, T., et al. (2013) Interferon-α (IFN-α) Suppresses HTLV-1 Gene Expression and Cell Cycling, While IFN-α Combined with Zidovudin Induces p53 Signaling and Apoptosis in HTLV-1-Infected Cells. Retrovirology, 10, Article No. 52. >https://doi.org/10.1186/1742-4690-10-52 Kchour, G., Tarhini, M., Kooshyar, M., El Hajj, H., Wattel, E., Mahmoudi, M., et al. (2009) Phase 2 Study of the Efficacy and Safety of the Combination of Arsenic Trioxide, Interferon α, and Zidovudine in Newly Diagnosed Chronic Adult T-Cell Leukemia/Lymphoma (ATL). Blood, 113, 6528-6532. >https://doi.org/10.1182/blood-2009-03-211821 Hachiman, M., Yoshimitsu, M., Ezinne, C., Kuroki, A., Kozako, T. and Arima, N. (2018) In Vitro Effects of Arsenic Trioxide, Interferon α and Zidovudine in Adult T Cell Leukemia/Lymphoma Cells. Oncology Letters, 16, 1305-1311. >https://doi.org/10.3892/ol.2018.8771 Reis, I., Manrique, M., Cabral, L., Diaz, L., Toomey, N., Ruiz, P., et al. (2012) The Combination of AZT/Interferon-α Therapy with the HDAC Inhibitor Valproic Acid for the Treatment of Adult T-Cell Leukemia/Lymphoma. Blood, 120, 4877-4877. >https://doi.org/10.1182/blood.v120.21.4877.4877 Volberding, P.A., Lagakos, S.W., Koch, M.A., Pettinelli, C., Myers, M.W., Booth, D.K., et al. (1990) Zidovudine in Asymptomatic Human Immunodeficiency Virus Infection. New England Journal of Medicine, 322, 941-949. >https://doi.org/10.1056/nejm199004053221401 Fischl, M.A., Finkelstein, D.M., He, W., Powderly, W.G., Triozzi, P.L. and Steigbigel, R.T. (1996) A Phase II Study of Recombinant Human Interferon-α 2a and Zidovudine in Patients with AIDS-Related Kaposi’s Sarcoma. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 11, 379-384. >https://doi.org/10.1097/00042560-199604010-00008 Peng, Y., Zong, Y., Wang, D., Chen, J., Chen, Z., Peng, F., et al. (2023) Current Drugs for HIV-1: From Challenges to Potential in HIV/AIDS. Frontiers in Pharmacology, 14, Article 1294966. >https://doi.org/10.3389/fphar.2023.1294966 Deeks, S.G., Lewin, S.R. and Havlir, D.V. (2013) The End of AIDS: HIV Infection as a Chronic Disease. The Lancet, 382, 1525-1533. >https://doi.org/10.1016/s0140-6736(13)61809-7 Groopman, J.E., Gottlieb, M.S., Goodman, J., Mitsuyasu, R.T., Conant, M.A., Prince, H., et al. (1984) Recombinant α-2 Interferon Therapy for Kaposi’s Sarcoma Associated with the Acquired Immunodeficiency Syndrome. Annals of Internal Medicine, 100, 671-676. >https://doi.org/10.7326/0003-4819-100-5-671 Mitsuyasu, R.T. (1991) Interferon α in the Treatment of Aids‐Related Kaposi’s Sarcoma. British Journal of Haematology, 79, 69-73. >https://doi.org/10.1111/j.1365-2141.1991.tb08124.x Berk, L., Schalm, S.W. and Heijtink, R.A. (1992) Zidovudine Inhibits Hepatitis B Virus Replication. Antiviral Research, 19, 111-118. >https://doi.org/10.1016/0166-3542(92)90070-l Bingfa, X., Qinglin, F., Hui, H., Canjun, W., Wei, W. and Lihua, S. (2009) Anti-Hepatitis B Virus Activity and Mechanisms of Recombinant Human Serum Albumin-Interferon-α-2b Fusion Protein in Vitro and in Vivo. Pharmacology, 83, 323-332. >https://doi.org/10.1159/000215588 Janssen, H.L.A., Berk, L., Heijtink, R.A., Ten Kate, F.J.W. and Schalm, S.W. (1993) Interferon-α and Zidovudine Combination Therapy for Chronic Hepatitis B: Results of a Randomized, Placebo-Controlled Trial. Hepatology, 17, 383-388. >https://doi.org/10.1002/hep.1840170306 张希顺, 申雪粉, 王雷, 等. 聚乙二醇干扰素α-2a注射液联合恩替卡韦治疗乙型病毒性肝炎的临床疗效分析[J]. 临床医药文献电子杂志, 2019, 6(1): 32-33. 张惠勇, 卢燕辉, 吴秀欣. 聚乙二醇干扰素α2a联合替诺福韦对耐药性乙肝 患者肝功能及HBV-DNA转阴率的影响[J]. 中外医疗, 2019, 38(6): 1-3. 张程. 派罗欣联合利巴韦林治疗慢性丙肝的疗效观察[J]. 中国冶金工业医学杂志, 2024, 41(1): 75-76. 赵维佳, 邓玉洁. 索磷布韦维帕他韦治疗慢性丙肝及缓解肝脏纤维化的临床效果观察[J]. 贵州医药, 2024, 48(5): 725-727. Mogahed, E.A., El-Karaksy, H., Abdullatif, H., Yasin, N.A., Nagy, A., Alem, S.A., et al. (2021) Improvement in Liver Stiffness in Pediatric Patients with Hepatitis C Virus after Treatment with Direct Acting Antivirals. The Journal of Pediatrics, 233, 126-131. >https://doi.org/10.1016/j.jpeds.2021.02.012 Feinman, S.V., Berris, B., Sooknanan, R., Fernandes, B. and Bojarski, S. (1992) Effects of Interferon-α Therapy on Serum and Liver HBV DNA in Patients with Chronic Hepatitis B. Digestive Diseases and Sciences, 37, 1477-1482. >https://doi.org/10.1007/bf01296489 Ruprecht, R.M., Chou, T.C., Chipty, F., et al. (1990) Interferon-α and 3’-Azido-3’-Deoxythymidine Are Highly Synergistic in Mice and Prevent Viremia after Acute Retrovirus Exposure. Journal of Acquired Immune Deficiency Syndromes, 6, 591-600. Wu, W., Rochford, R., Toomey, L., Harrington, W. and Feuer, G. (2005) Inhibition of HHV-8/KSHV Infected Primary Effusion Lymphomas in NOD/SCID Mice by Azidothymidine and Interferon-α. Leukemia Research, 29, 545-555. >https://doi.org/10.1016/j.leukres.2004.11.010
Baidu
map