aep Advances in Environmental Protection 2164-5485 2164-5493 beplay体育官网网页版等您来挑战! 10.12677/aep.2025.153042 aep-110088 Articles 地球与环境 壳聚糖基水凝胶吸附剂的除磷效能及 再利用研究
Study on Phosphorus Removal Efficiency and Reuse of Chitosan-Based Hydrogel Adsorbent
隋晓萌 张欣桐 冯巨龙 谷雨桐 烟台大学土木工程学院,山东 烟台 05 03 2025 15 03 346 357 8 2 :2025 12 2 :2025 12 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 磷的过量排放会导致水体的富营养化,但其实磷是不可再生资源。若使用可回收且环境友好型的吸附剂吸附去除水中的磷后,将废弃的吸附剂作为植物肥料,或可达到绿色循环再利用的目的。本研究制备了两种壳聚糖基水凝胶球CS-La/Ca和CS-Fe/Ca,考察对比了二者的吸附除磷效果以及吸附磷饱和后P、La、Fe的释放,以探究其作为植物肥料的潜能。CS-La/Ca的磷吸附容量较高(56.22 mg∙g 1),且对不同pH及共存阴离子的适应能力较强,但CS-Fe/Ca的吸附速率比CS-La/Ca快,且吸附饱和后磷的释放量更高,可达2.17 mg∙L 1。二者吸附饱和后,功能元素La和Fe的释放量分别为7~20 μg∙L 1和30~40 μg∙L 1,均为较低水平,不仅不会对植物造成损害,还可作为微量营养元素促进植物生长。因此,CS-La/Ca更适合用作富营养化水体修复材料,而CS-Fe/Ca更适合用作植物肥料,具有循环再利用的潜能。
Excessive discharge of phosphorus can lead to eutrophication of water, but in fact, phosphorus is a non-renewable resource. If recyclable and environmentally friendly adsorbents are used to remove phosphorus from water, the waste adsorbents can be used as plant fertilizers, or the purpose of green recycling can be achieved. In this study, two kinds of chitosan based hydrogel spheres, CS-La/Ca and CS-Fe/Ca, were prepared, and their adsorption and phosphorus removal effects and the release of P, La and Fe after saturated adsorption of phosphorus were investigated and compared, so as to explore their potential as plant fertilizers. CS-La/Ca has a higher phosphorus adsorption capacity (56.22 mg∙g 1) and strong adaptability to different pH and co-existing anions, but the adsorption rate of CS-Fe/Ca is faster than that of CS-La/Ca, and the phosphorus release amount after adsorption saturation is higher, reaching 2.17 mgP∙L 1. After adsorption and saturation, the release amounts of functional elements La and Fe are 7~20 μg∙L 1 and 30~40 μg∙L 1, respectively, which are low levels, not only do not cause damage to plants, but also can be used as micronutrients to promote plant growth. Therefore, CS-La/Ca is more suitable for use as eutrophication water restoration materials, while CS-Fe/Ca is more suitable for use as plant fertilizer, which has the potential of recycling.
壳聚糖,镧,铁,吸附除磷,循环再利用
Chitosan
Lanthanum Iron Phosphorus Removal by Adsorption Recycle and Reuse
1. 引言

磷作为一种生物体必需的营养元素,被广泛的应用于各个行业,然而过量的磷随着城市废水以及工农业污水的排放进入自然水体,使得磷负荷与日俱增,造成严重的水体富营养化问题 [1] - [4] 。因此,如何控制水中的磷是水处理领域一直关注的问题。然而,在水体中的磷严重超标的同时,却存在着磷源短缺的问题。磷是一种不可再生资源,目前世界各地对磷的使用通常是单向的、线性的,回收利用的途径很少,生产和使用效率极低 [5] 。因此,磷的回收再利用成为研究热点。

磷酸盐是植物和农作物的重要常量营养素之一,采用无毒害的吸附剂从水中回收磷酸盐后,废弃的吸附材料作为植物磷肥使用,或可成为一种更为绿色的循环再利用的解决方式 [6] [7] 。Karunarathna等 [6] 探究了吸附磷酸盐后的多糖-Fe(III)水凝胶球对羽衣甘蓝生长影响的实验,证明了在自然条件下吸附磷饱和后材料作为植物肥料的潜力。Qiao等 [8] 制备的磁性吸附剂Fe3O4/Zn-Al-Fe-La-LDH从模拟污水中回收磷酸盐后作为缓释肥料,可促进大豆的生长。为了实现此良性循环,需满足4个条件:(1) 对磷有良好的吸附去除效果;(2) 可回收;(3) 吸附饱和后可缓释磷;(4) 无毒或低毒性。在吸附除磷效果方面,Fe、Al、Ca、La表现优异 [9] - [17] ,尤其是它们的纳米材料。但纳米材料的缺点是不易回收,所以需将其制备成具有磁性或者大体量的材料。壳聚糖是纳米级材料颗粒化的常见基质,可通过简单的制备方法将纳米级的功能材料负载于壳聚糖中,便于回收。而且壳聚糖是天然高分子材料,来源广泛,含有丰富的官能团,易于改性,且生物相容性好,无毒害,不易造成二次污染,被认为是去除水体污染物最广泛、最适用的生物聚合物之一 [18] 。在吸附后磷释放方面,Fe、Al、Ca的研究较多 [19] - [21] ,但关于La的报道较少。在毒性方面,Fe、Ca是植物生长繁殖所必备的微量元素 [22] - [24] ,持续施用50天25 μM∙L1的FeSO4⋅7H2O有利于增加豇豆种子产量 [25] ,400~800 μmol∙L1的La可改善玉米等作物的品质、增加产量和促进植物的生长 [26] [27] ,但Al的存在可能会对植物的生长产生不利影响 [28] - [30] 。而是否对植物有毒害作用取决于这些元素的释放量,但在以往吸附除磷的研究中,功能元素的释放却鲜少报道。因此本研究拟采用壳聚糖作为基质,La、Fe、Ca作为吸附除磷的功能元素,制备两种壳聚糖基水凝胶吸附剂(CS-La/Ca和CS-Fe/Ca),对比两种吸附剂的吸附除磷效能的同时,考察其吸附磷饱和后P、La、Fe的释放量,从而验证CS-La/Ca和CS-Fe/Ca作为植物肥料再利用的可行性。

2. 材料与方法 2.1. 实验材料

实验所需要的药品试剂纯度均为分析纯,采用去离子水配置所需实验溶液。主要有:壳聚糖、海藻酸钠、水合氯化镧(LaCl3∙6H2O)、水合三氯化铁(FeCl3∙6H2O)、无水氯化钙(CaCl2)、酒石酸锑钾(C8H4K2OSb2)、磷酸二氢钾(KH2PO4)、硫酸(H2SO4)、抗坏血酸(C6H8O6)、氢氧化钠(NaOH)、盐酸(HCl)、碳酸钠(Na2CO3)、氯化钠(NaCl)、硫酸钠(Na2SO4)、硝酸钠(NaNO3),生产厂家为国药集团化学试剂有限公司和阿拉丁化学试剂有限公司。

2.2. 实验设备

实验所用的主要设备有:电子天平(AR124CN,OHAUS)、紫外分光光度计(AquaMate8000,Thermo Fisher Scientific)、静电纺丝机(PS-1+,盘丝科技)、电动机械搅拌器(R-30,巩义予华)、扫面电子显微镜(SEM,日本-JEOL-JSM-IT700HR)、恒温加热磁力搅拌器(DF-101S,巩义予华)、pH计(F2,METTLER TOLEDO)、电感耦合等离子体质谱仪(ICP-MS, 7800, Agilent)、傅立叶变换红外光谱仪(FTIR,日本岛津-IRTracer 100)、气浴振荡器(SHZ-82A,上海尚普)。

2.3. CS-La/Ca及CS-Fe/Ca的制备方法

CS-La/Ca (CS-LC):将2 g壳聚糖溶于100 mL去离子水中,并向其中加入2 mL乙酸以促进溶解,90℃加热搅拌直至粉末完全溶解,呈粘稠液体状。向溶液中投加1.44 g LaCl3∙6H2O和1 g CaCl2搅拌均匀。采用静电纺丝机,将混合溶液以1 mL∙min1速度,在9 kv电压作用下,滴入配置的1.25 mol∙L1 NaOH溶液中,形成直径约为1 mm的水凝胶球。固化12 h后,采用去离子水清洗材料至pH中性,并储存在去离子水中。

CS-Fe/Ca(CS-FC):将1.66 g FeCl3∙6H2O和1 g CaCl2溶于壳聚糖溶液中,其余步骤同CS-La/Ca的制备方法。

2.4. 实验方法

使用KH2PO4配制磷酸盐溶液,采用钼锑抗法使用紫外可见分光光度计测定实验中磷酸盐的浓度,采用ICP-MS测定低于1 mgP∙L1时的磷酸盐浓度。

1) 吸附等温线。配置浓度梯度为5~100 mgP∙L1的磷酸盐溶液,各取50 mL置于锥形瓶中。分别向溶液中加入CS-LC和CS-FC两种吸附剂,投加量为1 g∙L1。将锥形瓶置于气浴摇床中,温度为25℃,振荡速率为125 rpm,吸附2小时。取样测定吸附前后溶液中磷酸盐浓度变化。实验数据分别采用Langmuir和Freundlich等温吸附模型进行非线性回归分析,以探究吸附特性。

Langmuir模型:

1 Q e = 1 K L Q m × 1 C e + 1 Q m (1)

Freundlich模型:

ln Q e = 1 n ln C e + ln K F (2)

其中:

Qe——平衡时磷酸盐吸附容量,mg∙g1

Ce——平衡时磷酸盐浓度,mg∙L1

Qm——饱和吸附容量,mg∙g1

n —— Freundlich指数;

KL—— Langmuir常数,L∙mg1

KF—— Freundlich常数,mg∙g1

2) 吸附动力学。首先配置50 mgP∙L1的磷酸盐溶液,置于锥形瓶中,分别向溶液中加入CS-LC和CS-FC两种吸附剂,投加量为1 g∙L1。将锥形瓶置于气浴摇床中(25℃,125 rpm),吸附24小时。在实验过程中,于0、5、10、20、30、60、90、120、240、360、480、720和1440 min时取样,测定溶液中磷酸盐浓度变化。实验数据分别运用准一级和准二级动力学模型进行非线性拟合,以确定吸附过程的动力学特征。

准一级动力学模型:

ln ( q e q t ) = ln q e K 1 t (3)

准二级动力学模型:

t q t = 1 ( K 2 q e 2 ) + t q e (4)

其中:

qe——平衡时的磷吸附容量,mg∙g1

qt——t时的磷吸附容量,mg∙g1

K1——准一级动力学平衡常数,1∙min1

K2——准二级动力学平衡常数,g∙(mg∙min)1

3) pH对吸附的影响。将50 mgP∙L1的磷溶液的pH分别调至2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0、11.0,采用1 g∙L1的吸附剂投量,置于摇床中吸附24 h后,取样测定吸附前后的pH值及磷浓度。

4) 共存离子对吸附的影响。向含有50 mgP∙L1的磷溶液的锥形瓶中,分别加入 NO 3 SO 4 2 、Cl CO 3 2 四种阴离子,并分别投加1 g∙L1的吸附剂,吸附24 h。测定吸附前后溶液中的磷含量及吸附前后溶液的pH值。四种阴离子与磷的摩尔比为1:1

5) 吸附后材料的离子释放。将吸附磷饱和的吸附剂投入去离子水中,放入25℃,125 rpm转速摇床中。每24小时取一次样,共7天,采用ICP-MS测定材料所释放的各元素含量。

3. 结果与讨论 3.1. 材料表征

图1 图2 分别为采用SEM拍摄的CS-LC和CS-FC吸附磷前后的外观形貌。由 图1(a) 图2(a) 可知,两种材料外形均呈现较为均匀的球体。CS-LC的表面较为光滑,CS-FC的表面较为粗糙。而进一步放大图像后,可以发现,两种材料表面都负载有细小颗粒( 图1(b) 图2(b) )。两种材料的横截面图( 图1(c) 图2(c) )均显示出由管束堆积形成的多孔内部结构,这样可以提供更多的吸附位点,为磷酸盐的吸附奠定了基础。

此外,根据两种材料吸附磷后的元素分布图( 图1(f) 图2(f) )可知,La、Ca、Fe呈现均匀分布,表明两种材料中的功能组分被均匀负载于壳聚糖中,可提供均匀的吸附位点。吸附磷后的CS-LC截面较吸附前孔隙变小,呈网状( 图1(d) );而吸附磷后的CS-FC截面与吸附前相比变化不大( 图2(d) )。因此,CS-FC吸附磷后运输孔道更容易堵塞,不利于后续磷的吸附,而CS-LC则不会出现孔道堵塞的问题。但两种材料吸附磷后的元素分布图均显示出P的均匀分布,表明这两种壳聚糖基吸附剂对磷均具有吸附能力,同时也印证了两种材料吸附位点的均匀性。

Figure 1. SEM images of surface (a) (b), Cross section (c) and Post-adsorption cross section (d) (e) of CS-LC before adsorption, and mapping images of Post-adsorption (f)--图1. CS-LC吸附前的表面(a) (b)、截面(c)和吸附磷后的截面(d) (e)的SEM图,以及吸附磷后(f)的元素分布图-- Figure 2. SEM images of surface (a) (b) and cross section (c) before CS-FC adsorption and cross section (d) (e) after phosphorus adsorption, as well as element distribution images after adsorption (f)--图2. CS-FC吸附前的表面 (a) (b)、截面 (c)和吸附磷后的截面 (d) (e)的SEM图,以及吸附后 (f)的元素分布图像--

由CS-LC的红外光谱图( 图3(a) )可以看出,吸附磷后在901 cm1处出现了一个新的峰,是 PO 4 3 中典型的P-O键的非对称伸缩振动峰 [1] 。在CS-FC的红外光谱图( 图3(b) )中,吸附磷后在797 cm1处出现了新峰,这是FePO4中P-O-P键的对称伸缩振动峰。而在1159 cm1处出现的新峰,则可归因于P=O基团的拉伸震动 [5] 。此外,CS-LC和CS-FC的-OH基团在吸附磷酸盐后都发生了左移(波数变大),且峰型变窄,这可能是由于-OH官能团通过配体交换吸附了磷酸盐 [31] 。以上均表明,磷被吸附到了两种材料上。

Figure 3. Infrared spectra of CS-LC (a) and CS-FC (b) before and after phosphorus adsorption--图3. CS-LC (a)和CS-FC (b)吸附磷前后的红外光谱图--
<xref></xref>3.2. 吸附等温线

采用吸附等温实验考察CS-LC和CS-FC两种材料对磷的吸附效能,通过Freundlich模型和 Langmuir模型拟合得到的吸附等温线见 图4 ,拟合参数见 表1

从拟合曲线( 图4(a) 图4(b) )中可看出,CS-LC的吸附容量在低浓度范围内变化较大,而CS-FC的吸附容量则变化较为平缓;在相同的平衡浓度条件下,CS-LC的吸附容量明显高于CS-FC。以上均表明,CS-LC可提供更多的吸附点位,对磷的吸附效果优于CS-FC。

Figure 4. Adsorption isotherms of CS-LC (a) and CS-FC (b)--图4. CS-LC (a)和CS-FC (b)的吸附等温线--

通过比较相关系数R2 ( 表1 )可知,CS-LC对磷的吸附更符合Langmuir模型,表明该吸附以单分子层吸附为主 [11] ,而CS-FC对磷的吸附则更符合Freundlich模型。由Langmuir模型计算所得,CS-LC的最大磷吸附容量为56.22 mgP∙g1,与此前报道的一些吸附剂的吸附容量相近,如Lan等人 [32] 制备的La-Fe壳聚糖水凝胶吸附剂(La/Fe@CS,最大吸附容量为52.0 mgP∙g1),Liu等 [4] 制备的镧–壳聚糖除磷吸附剂(La-CTS-0X,最大吸附容量为46.28 mgP∙g1)。由CS-FC的Freundlich 模型得到的1/n,小于1,说明磷酸盐易于被CS-FC所吸附。当平衡浓度为78 mgP∙L1时,CS-FC的磷吸附容量为21.49 mgP∙g1,也表现出较此前研究更高的磷吸附容量,如Zhang等人 [33] 制备的Fe(III)掺杂壳聚糖(CTS-Fe)和交联Fe(III)-壳聚糖(CTS-Fe-CL)的最大磷吸附容量分别为15.7和10.2 mgP∙g1,Zeng等人 [31] 所制备的载铁磁性海藻酸盐-壳聚糖双凝胶互穿多孔微珠(M-IACBs)的最大磷吸附容量为18.5 mgP∙g1。对比CS-FC和CS-LC,CS-LC具有更高吸附容量,这可能是由于La对磷酸根的吸附能力强于铁 [34] [35]

此外,从 图4 可看出,当磷平衡浓度升高时(10~80 mgP∙L1),CS-FC对磷的吸附容量明显随之增大,而CS-LC的磷吸附容量只是略微升高。这一现象可通过SEM图像得到解释:从 图1(e) 可看出,CS-LC在吸附磷后有明显的刺状结构产生,溶液中的磷首先接触的是表面位点,所以会在吸附剂表面产生针状结构,堵塞管状通道,阻碍磷进入接触深层吸附位点,所以当磷平衡浓度升高时CS-LC对磷的吸附并未显著增加。但CS-FC在吸附磷前后形貌并未发生明显变化( 图2(e) ),管状通道顺畅,溶液中的磷容易进入深层位点,所以当平衡浓度升高时,从吸附容量也会随之增加。

<xref></xref>Table 1. Adsorption isotherm model parameters of phosphate adsorbed by CS-LC and CS-FC at 25˚CTable 1. Adsorption isotherm model parameters of phosphate adsorbed by CS-LC and CS-FC at 25˚C 表1. 25℃时CS-LC和CS-FC吸附磷酸盐的吸附等温线模型参数

模型

Langmuir

Freundlich

参数

Qm (mg∙g1)

KL (L∙mg1)

R2

1/n

Kf (mg∙g1)

R2

CS-LC

56.22

0.5052

0.953

0.26

22.683

0.867

CS-FC

26.29

0.0442

0.935

0.44

3.198

0.981

3.3. 吸附动力学

为了考察两种材料对磷吸附的速度,采用准一级和准二级动力学模型对吸附数据进行了拟合。不同接触时间对应的吸附容量见 图5 ,相关拟合参数见 表2 。由 图5 中的拟合曲线可知,CS-LC和CS-FC对磷的吸附均呈现先快后慢,最终趋于平缓的趋势。在吸附过程的初始阶段,由于吸附点位充裕且溶液中磷元素浓度较高,扩散驱动力显著,因此吸附速率较快。随着吸附反应的进行,吸附点位逐渐被占据,同时溶液中磷浓度下降,导致扩散驱动力减弱。这一变化使得吸附速率逐渐减缓,最终趋于饱和状态并达到吸附平衡。根据拟合所得的相关系数R2可知,CS-LC和CS-FC两种吸附剂对磷的吸附,均更符合准二级动力学模型,说明两种材料吸附磷的过程均包含化学吸附。对比两种材料的吸附速率常数k2可知,CS-FC对磷的吸附更快,而与其他铁基吸附剂的吸附速率相近,如载铁磁性海藻酸盐-壳聚糖双凝胶互穿多孔微珠(M-IACBs,k2 = 0.0033 g∙mg1∙min1) [31] ,交联Fe(III)壳聚糖吸附剂(CTS-Fe-CL,k2 = 0.0039 g∙mg1∙min1) [33]

<xref></xref>Table 2. Kinetic model parameters of phosphate adsorption by CS-LC and CS-FC at 25˚CTable 2. Kinetic model parameters of phosphate adsorption by CS-LC and CS-FC at 25˚C 表2. 25℃时CS-LC和CS-FC吸附磷酸盐的吸附动力学模型参数

模型

准一级动力学

准二级动力学

参数

k1 (1∙min1)

qe (cal) (mgP∙g1)

R2

k2 (g∙(mg∙min)1)

qe (cal) (mgP∙g1)

R2

CS-LC

0.0170

44.4033

0.977

0.0001

48.160

0.995

CS-FC

0.0322

12.7433

0.956

0.0032

13.769

0.991

Figure 5. Adsorption kinetics of CS-LC (a) and CS-FC (b)--图5. CS-LC (a)和CS-FC (b)的吸附动力学--
3.4. pH及共存阴离子的影响

溶液的pH会影响吸附剂对磷酸盐的吸附效能。与初始pH值相比,吸附后的最终pH值均表现出增加的趋势,这是由于磷酸盐被吸附到了CS-LC和CS-FC上,通过配体交换释放了OH [3] 。从 图6(a) 可看出,当pH = 2时,CS-FC和CS-LC的磷吸附容量均很低,因为此时磷是主要是以H3PO4存在,呈电中性,不利于被吸附。当pH为4~11时,CS-LC的吸附容量维持在较高的水平(33.2~40.8 mgP∙g1),在pH = 4时吸附性能最好,这是由于当2 < pH < 12时, H 2 PO 4 HPO 4 2 占优势,呈电负性,易于被吸附。同样,CS-FC也在pH为3~11呈现相对较高的吸附容量。但CS-FC在pH = 3时吸附效果最好( 图6(b) ),此后随着pH的增加吸附容量呈现降低趋势,最低可降至8 mgP∙g1,这可能是由于随着pH的升高,OH浓度升高,会加剧OH与磷酸盐对吸附点位的竞争 [36] ,不利于进行配体交换。由此可以看出,在吸附除磷方面,CS-LC对pH的适应能力更强。

Figure 6. Effect of initial pH on phosphate removal by CS-LC (a) and CS-FC (b)--图6. 初始pH值对CS-LC (a)和CS-FC (b)去除磷酸盐的影响--

水中共存阴离子的存在可能会对磷酸盐的吸附效果产生一定的影响。因此,本研究考察了水中四种常见的阴离子对CS-LC和CS-FC吸附除磷效果的影响。由 图7 可看出,四种阴离子均对CS-LC和CS-FC的磷吸附容量均产生了一定的负面影响。不同的是,四种阴离子对CS-LC的影响较为一致,吸附容量降低了15.8%~23%,表明CS-LC对磷酸根离子的选择性高于其他阴离子;而对于CS-FC, CO 3 2 产生的负面影响最大,吸附容量约降低了49 %。此外,碳元素与磷元素是相邻同族的对角线关系,因此它们所对应的 CO 3 2 PO 4 3 具有相似的化学结构,导致二者对吸附位点的竞争作用较强,从而抑制了磷的去除 [37] 。总的来说,CS-LC抵抗共存阴离子干扰的能力优于CS-FC。

Figure 7. Effect of coexisting anions on phosphate adsorption capacity of CS-LC (a) and CS-FC (b)--图7. 共存阴离子对CS-LC (a)和CS-FC (b)吸附磷酸盐能力的影响--
3.5. 吸附后材料的释放

为了考察吸附磷饱和后的吸附剂的磷缓释能力,本研究将吸附磷饱和的CS-LC和CS-FC分别投入去离子水中,测定P的释放( 图8(a) )。结果表明,吸附饱和后的CS-LC所释放的磷含量远小于CS-FC所释放的磷。吸附饱和后的CS-FC一放入水中便开始释磷,释磷量在第1天达到峰值,为2.17 mgP∙L1,之后随时间的延长逐渐降低。而CS-LC的磷释放量虽然也随时间的延长呈上升趋势,但均维持在较低水平(0.077~0.016 mgP∙L1)。这可能与镧对磷的强结合作用有关,磷被吸附后很难脱附释放到水中 [38] 。此外,本研究还对材料中的镧、铁的释放浓度进行了测定( 图8(b) ),避免因浓度过高而对植物产生毒性作用。结果表明,两种材料所释放的La含量为7~20 μg∙L1,释放的Fe含量为30~40 μg∙L1,均不会对植物造成损害,且可作为微量元素为植物提供营养 [39]

Figure 8. The elements of the material are released after saturation of adsorbed phosphorus--图8. 吸附磷饱和后材料的元素释放--
4. 结论

(1) 本研究采用环境友好的天然高分子材料壳聚糖负载成本和毒性均较低的La、Fe、Ca,通过电纺技术制备了CS-LC和CS-FC两种水凝胶球,用以吸附去除水中的磷,并探究了吸附磷饱和后的材料作为植物肥料的潜能。

(2) CS-LC对磷的吸附更符合Langmuir模型,最大吸附容量为56.22 mg∙g1。而CS-FC对磷的吸附符合Freundlich模型,当磷平衡浓度为78 mgP∙L1时,CS-FC的磷吸附容量为21.49 mgP∙g1。两种材料对磷的吸附动力学均符合准二级动力学模型,表明两者的吸附过程都包含了化学吸附。对比两种材料的吸附速率常数可得,CS-FC对磷的吸附更快。

(3) CS-LC在pH 4~11范围内可保持较高的吸附容量(33.2~40.8 mgP∙g1),而CS-FC的磷吸附容量则在pH 3~11的范围内随pH的升高而有所降低,最低可降至8 mgP∙g1。此外,CS-LC抵抗共存阴离子干扰的能力优于CS-FC。

(4) 吸附磷饱和后的CS-LC的磷释放量明显少于CS-FC,可能与镧对磷的强结合力有关。两种材料所释放的镧、铁元素均在对植物无害或有益的范围内。

(5) 综上,若以修复富营养化水体为目的,选择CS-LC较为合适,吸附能力强,不易脱附,从而减少底泥中磷的释放;若以循环再利用为目的,选择CS-FC更为合适,吸附速率快,吸附饱和后磷的释放量相对较高,具有作为植物肥料的潜力。

NOTES

*通讯作者。

References Zhao, Y., Guo, L., Shen, W., An, Q., Xiao, Z., Wang, H., et al. (2020) Function Integrated Chitosan-Based Beads with Throughout Sorption Sites and Inherent Diffusion Network for Efficient Phosphate Removal. Carbohydrate Polymers, 230, Article 115639. >https://doi.org/10.1016/j.carbpol.2019.115639 Yu, J., Zeng, Y., Chen, J., Liao, P., Yang, H. and Yin, C. (2022) Organic Phosphorus Regeneration Enhanced since Eutrophication Occurred in the Sub-Deep Reservoir. Environmental Pollution, 306, Article 119350. >https://doi.org/10.1016/j.envpol.2022.119350 Kong, H., Wang, J., Zhang, G., Shen, F., Li, Q. and Huang, Z. (2023) Synthesis of Three-Dimensional Porous Lanthanum Modified Attapulgite Chitosan Hydrogel Bead for Phosphate Removal: Performance, Mechanism, Cost-Benefit Analysis. Separation and Purification Technology, 320, Article 124098. >https://doi.org/10.1016/j.seppur.2023.124098 Liu, B., Yu, Y., Han, Q., Lou, S., Zhang, L. and Zhang, W. (2020) Fast and Efficient Phosphate Removal on Lanthanum-Chitosan Composite Synthesized by Controlling the Amount of Cross-Linking Agent. International Journal of Biological Macromolecules, 157, 247-258. >https://doi.org/10.1016/j.ijbiomac.2020.04.159 Wang, J., Zhang, G., Qiao, S. and Zhou, J. (2021) Magnetic Fe 0/Iron Oxide-Coated Diatomite as a Highly Efficient Adsorbent for Recovering Phosphorus from Water. Chemical Engineering Journal, 412, Article 128696. >https://doi.org/10.1016/j.cej.2021.128696 Karunarathna, M.H.J.S., Hatten, Z.R., Bailey, K.M., Lewis, E.T., Morris, A.L., Kolk, A.R., et al. (2019) Reclaiming Phosphate from Waste Solutions with Fe(III)-Polysaccharide Hydrogel Beads for Photo-Controlled-Release Fertilizer. Journal of Agricultural and Food Chemistry, 67, 12155-12163. >https://doi.org/10.1021/acs.jafc.9b02860 Feng, W., Cui, H., Zhu, H., Shutes, B., Yan, B. and Hou, S. (2023) Layered Double Hydroxides, an Effective Nanomaterial to Remove Phosphorus from Wastewater: Performance, Mechanism, Factors and Reusability. Science of the Total Environment, 884, Article 163757. >https://doi.org/10.1016/j.scitotenv.2023.163757 Qiao, W., Bai, H., Tang, T., Miao, J. and Yang, Q. (2019) Recovery and Utilization of Phosphorus in Wastewater by Magnetic Fe 3O 4/Zn-Al-Fe-La Layered Double Hydroxides (LDHs). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 118-128. >https://doi.org/10.1016/j.colsurfa.2019.05.046 Ahmed, A.M., Mekonnen, M.L., Jote, B.A., Damte, J.Y., Mengesha, E.T., Lednický, T., et al. (2024) Removal of Phosphate from Wastewater Using Zirconium/Iron Embedded Chitosan/alginate Hydrogel Beads: An Experimental and Computational Perspective. International Journal of Biological Macromolecules, 281, Article 136431. >https://doi.org/10.1016/j.ijbiomac.2024.136431 Beiyuan, J., Wu, X., Ruan, B., Chen, Z., Liu, J., Wang, J., et al. (2024) Highly Efficient Removal of Aqueous Phosphate via Iron-Manganese Fabricated Biochar: Performance and Mechanism. Chemosphere, 364, Article 143207. >https://doi.org/10.1016/j.chemosphere.2024.143207 Liu, S., Fan, F., Ni, Z., Liu, J. and Wang, S. (2023) Sustainable Lanthanum-Attapulgite/Alginate Hydrogels with Enhanced Mechanical Strength for Selective Phosphate Scavenging. Journal of Cleaner Production, 385, Article 135649. >https://doi.org/10.1016/j.jclepro.2022.135649 王亚, 杨梦, 刘柏, 等. 磁性载镧水凝胶对低浓度磷的吸附性能[J]. 环境工程学报, 2024, 18(10): 2844-2856. Karasa, J., Ozola-Davidāne, R., Gruškeviča, K., Ozoliņa, K.A., Mikosa, L.I. and Kostjukovs, J. (2024) Phosphorus Removal from Municipal Wastewater Using Calcium/Iron Oxide Composites: Adsorption Efficiency and Impact on Plant Growth. Science of the Total Environment, 955, Article 177227. >https://doi.org/10.1016/j.scitotenv.2024.177227 Santos, A.F., Lopes, D.V., Alvarenga, P., Gando-Ferreira, L.M. and Quina, M.J. (2024) Phosphorus Removal from Urban Wastewater through Adsorption Using Biogenic Calcium Carbonate. Journal of Environmental Management, 351, Article 119875. >https://doi.org/10.1016/j.jenvman.2023.119875 Xu, R., Lyu, T., Zhang, M., Cooper, M. and Pan, G. (2020) Molecular-Level Investigations of Effective Biogenic Phosphorus Adsorption by a Lanthanum/Aluminum-Hydroxide Composite. Science of the Total Environment, 725, Article 138424. >https://doi.org/10.1016/j.scitotenv.2020.138424 Yin, H., Zhang, M., Huo, L. and Yang, P. (2022) Efficient Removal of Phosphorus from Constructed Wetlands Using Solidified Lanthanum/Aluminum Amended Attapulgite/biochar Composite as a Novel Phosphorus Filter. Science of the Total Environment, 833, Article 155233. >https://doi.org/10.1016/j.scitotenv.2022.155233 Zhang, F., Yan, J., Fang, J., Yan, Y., Zhang, S. and Benoit, G. (2023) Sediment Phosphorus Immobilization with the Addition of Calcium/Aluminum and Lanthanum/Calcium/Aluminum Composite Materials under Wide Ranges of Ph and Redox Conditions. Science of the Total Environment, 863, Article 160997. >https://doi.org/10.1016/j.scitotenv.2022.160997 Eltaweil, A.S., Omer, A.M., El-Aqapa, H.G., Gaber, N.M., Attia, N.F., El-Subruiti, G.M., et al. (2021) Chitosan Based Adsorbents for the Removal of Phosphate and Nitrate: A Critical Review. Carbohydrate Polymers, 274, Article 118671. >https://doi.org/10.1016/j.carbpol.2021.118671 Peng, J., Wang, B., Song, Y., Yuan, P. and Liu, Z. (2007) Adsorption and Release of Phosphorus in the Surface Sediment of a Wastewater Stabilization Pond. Ecological Engineering, 31, 92-97. >https://doi.org/10.1016/j.ecoleng.2007.06.005 Johnston, A.E. and Richards, I.R. (2003) Effectiveness of Different Precipitated Phosphates as Phosphorus Sources for Plants. Soil Use and Management, 19, 45-49. >https://doi.org/10.1111/j.1475-2743.2003.tb00278.x Aliyat, F.Z., Maldani, M., El Guilli, M., Nassiri, L. and Ibijbijen, J. (2022) Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates. Microorganisms, 10, Article 980. >https://doi.org/10.3390/microorganisms10050980 Landa, P. (2021) Positive Effects of Metallic Nanoparticles on Plants: Overview of Involved Mechanisms. Plant Physiology and Biochemistry, 161, 12-24. >https://doi.org/10.1016/j.plaphy.2021.01.039 Zhu, G., Sun, Y., Shakoor, N., Zhao, W., Wang, Q., Wang, Q., et al. (2023) Phosphorus-Based Nanomaterials as a Potential Phosphate Fertilizer for Sustainable Agricultural Development. Plant Physiology and Biochemistry, 205, Article 108172. >https://doi.org/10.1016/j.plaphy.2023.108172 Kirkby, E.A. And Pilbeam, D.J. (1984) Calcium as a Plant Nutrient. Plant, Cell&Environment, 7, 397-405. >https://doi.org/10.1111/j.1365-3040.1984.tb01429.x Márquez-Quiroz, C., De-la-Cruz-Lázaro, E., Osorio-Osorio, R. and Sánchez-Chávez, E. (2015) Biofortification of Cowpea Beans with Iron: Iron’s Influence on Mineral Content and Yield. Journal of Soil Science and Plant Nutrition, 15, 839-847. >https://doi.org/10.4067/s0718-95162015005000058 Huang, G. and Shan, C. (2018) Lanthanum Improves the Antioxidant Capacity in Chloroplast of Tomato Seedlings through Ascorbate-Glutathione Cycle under Salt Stress. Scientia Horticulturae, 232, 264-268. >https://doi.org/10.1016/j.scienta.2018.01.025 Cui, W., Kamran, M., Song, Q., Zuo, B., Jia, Z. and Han, Q. (2019) Lanthanum Chloride Improves Maize Grain Yield by Promoting Photosynthetic Characteristics, Antioxidants Enzymes and Endogenous Hormone at Reproductive Stages. Journal of Rare Earths, 37, 781-790. >https://doi.org/10.1016/j.jre.2018.12.006 Yamamoto, Y. (2018) Aluminum Toxicity in Plant Cells: Mechanisms of Cell Death and Inhibition of Cell Elongation. Soil Science and Plant Nutrition, 65, 41-55. >https://doi.org/10.1080/00380768.2018.1553484 Singh, S., Tripathi, D.K., Singh, S., Sharma, S., Dubey, N.K., Chauhan, D.K., et al. (2017) Toxicity of Aluminium on Various Levels of Plant Cells and Organism: A Review. Environmental and Experimental Botany, 137, 177-193. >https://doi.org/10.1016/j.envexpbot.2017.01.005 Ur Rahman, S., Han, J., Ahmad, M., Ashraf, M.N., Khaliq, M.A., Yousaf, M., et al. (2024) Aluminum Phytotoxicity in Acidic Environments: A Comprehensive Review of Plant Tolerance and Adaptation Strategies. Ecotoxicology and Environmental Safety, 269, Article 115791. >https://doi.org/10.1016/j.ecoenv.2023.115791 Zeng, H., Sun, S., Xu, K., Zhao, W., Hao, R., Zhang, J., et al. (2022) Iron-Loaded Magnetic Alginate-Chitosan Double-Gel Interpenetrated Porous Beads for Phosphate Removal from Water: Preparation, Adsorption Behavior and pH Stability. Reactive and Functional Polymers, 177, Article 105328. >https://doi.org/10.1016/j.reactfunctpolym.2022.105328 Lan, Z., Lin, Y. and Yang, C. (2022) Lanthanum-Iron Incorporated Chitosan Beads for Adsorption of Phosphate and Cadmium from Aqueous Solutions. Chemical Engineering Journal, 448, Article 137519. >https://doi.org/10.1016/j.cej.2022.137519 Zhang, B., Chen, N., Feng, C. and Zhang, Z. (2018) Adsorption for Phosphate by Crosslinked/Non-Crosslinked-Chitosan-Fe(III) Complex Sorbents: Characteristic and Mechanism. Chemical Engineering Journal, 353, 361-372. >https://doi.org/10.1016/j.cej.2018.07.092 Zhu, B., Yuan, R., Wang, S., Chen, H., Zhou, B., Cui, Z., et al. (2024) Iron-Based Materials for Nitrogen and Phosphorus Removal from Wastewater: A Review. Journal of Water Process Engineering, 59, Article 104952. >https://doi.org/10.1016/j.jwpe.2024.104952 He, Q., Zhao, H., Teng, Z., Wang, Y., Li, M. and Hoffmann, M.R. (2022) Phosphate Removal and Recovery by Lanthanum-Based Adsorbents: A Review for Current Advances. Chemosphere, 303, Article 134987. >https://doi.org/10.1016/j.chemosphere.2022.134987 Cui, X., Dai, X., Khan, K.Y., Li, T., Yang, X. and He, Z. (2016) Removal of Phosphate from Aqueous Solution Using Magnesium-Alginate/Chitosan Modified Biochar Microspheres Derived from Thalia Dealbata. Bioresource Technology, 218, 1123-1132. >https://doi.org/10.1016/j.biortech.2016.07.072 付军, 范芳, 李海宁, 等. 铁锰复合氧化物/壳聚糖珠: 一种环境友好型除磷吸附剂[J]. 环境科学, 2016, 37(12): 4882-4890. Li, J., Li, B., Yu, W., Huang, H., Han, J., Huang, Y., et al. (2022) Lanthanum-Based Adsorbents for Phosphate Reutilization: Interference Factors, Adsorbent Regeneration, and Research Gaps. Sustainable Horizons, 1, Article 100011. >https://doi.org/10.1016/j.horiz.2022.100011 Thomé, A., de Souza, T.O., Thomé, G.C.H. and Reginatto, C. (2020) Phytotoxic Effect on Corn and Soybean Due Addition of Nanoiron to the Soil. Water, Air, & Soil Pollution, 231, Article No. 12. >https://doi.org/10.1007/s11270-019-4384-6
Baidu
map