2.2. 热可逆聚氨酯的制备Figure 1. The synthesis of thermally reversible polyurethane--图1. 热可逆聚氨酯的合成路径示意图--
<xref></xref>Table 1. Component ratios of polyurethane PU-D230-DA with different formulations and the control samples PU-D230 and PU-DATable 1. Component ratios of polyurethane PU-D230-DA with different formulations and the control samples PU-D230 and PU-DA 表1. 不同配比的聚氨酯PU-D230-DA和对照样PU-D230,PU-DA的组分比
Sample
R
TDI/g
PPG/g
D230/g
FA/g
BMI/g
Content of D230 segments
Content of DA segments
PU-D2302.5
3.5
6.10
20
5.75
0
0
16.27%
0%
PU-D2302.0-DA0.5
3.5
6.10
20
4.60
1
1.79
12.44%
8.54%
PU-D2301.5-DA1.0
3.5
6.10
20
3.45
2
3.58
9.00%
21.85%
PU-D2301.0-DA1.5
3.5
6.10
20
2.30
3
5.38
5.71%
20.80%
PU-D2300.5-DA2.0
3.5
6.10
20
1.15
4
7.167
2.74%
26.64%
PU-DA2.5
3.5
6.16
20
0
5
8.96
0%
32.05%
热可逆聚氨酯的合成过程如
图1
所示。以PU-D2301.0-DA1.5为例,首先向四口烧瓶中加入12.20 g TDI和10 ml DMF,在氮气保护下以120 r/min机械搅拌升温至60℃,随后,按投料比n(-NCO) / n(-OH) = 3.5的投料比加入40 g PPG和10 ml DMF保持60℃反应30 min。随后,按n(-NCO) / n(-NH2) = 1.0的投料比取4.6 g D230稀释于20 ml DMF后在20 min内缓慢滴加入烧瓶中。反应30 min后,得到聚氨酯预聚体(PPU)。以n(-NCO) / n(-OH) = 1.5的投料比将3 g FA加入烧瓶中,并滴加4滴DBTDL,继续加热搅拌4 h即可获得呋喃封端的聚氨酯预聚体。随后,按呋喃:双马来酰亚胺摩尔比1:1加入BMI,升温至80℃反应6 h。最后,将样品注模,并在70℃下固化48 h,脱模后即可得到PU-D2301.0-DA1.5热可逆聚氨酯。样品原料配比如
表1
所示。
3.2. 力学性能Figure 4. (a) Stress-strain curves, (b) variation curves of tensile strength and elongation at break, and (c) variation curves of Young’s modulus and toughness of the samples--图4. 样品的(a)应力应变曲线(b)拉伸强度和断裂伸长率变化曲线和(c)杨氏模量和韧性变化曲线--
Figure 7. (a) Stress-strain curves at different repair times and (b) for various numbers of repairs at the optimal repair time for PU-D2301.0-DA1.5--图7. 120℃下PU-D2301.0-DA1.5的(a)不同修复时间的应力–应变曲线和(b)最佳修复时间下不同修复次数的应力–应变曲线--4. 热可逆聚氨酯增强增韧原理和自修复机理
References
Jiang, R., Zheng, X., Zhu, S., Li, W., Zhang, H., Liu, Z., et al. (2023) Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect, 8, e202204132.
>https://doi.org/10.1002/slct.202204132
Pan, G., Wang, Z., Kong, D., Sun, T., Zhai, H., Tian, T., et al. (2021) Transparent, Flame‐Retarded, Self‐Healable, Mechanically Strong Polyurethane Elastomers: Enabled by the Synthesis of Phosphorus/Nitrogen‐Containing Oxime Chain‐Extender. Journal of Applied Polymer Science, 139, Article ID: 51598.
>https://doi.org/10.1002/app.51598
Ekeocha, J., Ellingford, C., Pan, M., Wemyss, A.M., Bowen, C. and Wan, C. (2021) Challenges and Opportunities of Self‐Healing Polymers and Devices for Extreme and Hostile Environments. Advanced Materials, 33, Article ID: 2008052.
>https://doi.org/10.1002/adma.202008052
Zhang, H., Wang, D., Liu, W., Li, P., Liu, J., Liu, C., et al. (2017) Recyclable Polybutadiene Elastomer Based on Dynamic Imine Bond. Journal of Polymer Science Part A: Polymer Chemistry, 55, 2011-2018.
>https://doi.org/10.1002/pola.28577
Kang, J., Tok, J.B.-. and Bao, Z. (2019) Self-Healing Soft Electronics. Nature Electronics, 2, 144-150.
>https://doi.org/10.1038/s41928-019-0235-0
Feng, L., Zhao, H., He, X., Zhao, Y., Gou, L. and Wang, Y. (2019) Synthesis and Self‐healing Behavior of Thermoreversible Epoxy Resins Modified with Nitrile Butadiene Rubber. Polymer Engineering&Science, 59, 1603-1610.
>https://doi.org/10.1002/pen.25158
Liu, Y. and Chuo, T. (2013) Self-Healing Polymers Based on Thermally Reversible Diels-Alder Chemistry. Polymer Chemistry, 4, 2194-2205.
>https://doi.org/10.1039/c2py20957h
Chang, H., Kim, M.S., Huber, G.W. and Dumesic, J.A. (2021) Design of Closed-Loop Recycling Production of a Diels-Alder Polymer from a Biomass-Derived Difuran as a Functional Additive for Polyurethanes. Green Chemistry, 23, 9479-9488.
>https://doi.org/10.1039/d1gc02865k
Perera, M.M. and Ayres, N. (2020) Dynamic Covalent Bonds in Self-Healing, Shape Memory, and Controllable Stiffness Hydrogels. Polymer Chemistry, 11, 1410-1423.
>https://doi.org/10.1039/c9py01694e
Aguirresarobe, R.H., Nevejans, S., Reck, B., Irusta, L., Sardon, H., Asua, J.M., et al. (2021) Healable and Self-Healing Polyurethanes Using Dynamic Chemistry. Progress in Polymer Science, 114, Article ID: 101362.
>https://doi.org/10.1016/j.progpolymsci.2021.101362
Feng, L., Yu, Z., Bian, Y., Lu, J., Shi, X. and Chai, C. (2017) Self-Healing Behavior of Polyurethanes Based on Dual Actions of Thermo-Reversible Diels-Alder Reaction and Thermal Movement of Molecular Chains. Polymer, 124, 48-59.
>https://doi.org/10.1016/j.polymer.2017.07.049
Tu, H., Zhou, M., Gu, Y. and Gu, Y. (2022) Conductive, Self-Healing, and Repeatable Graphene/Carbon Nanotube/Polyurethane Flexible Sensor Based on Diels-Alder Chemothermal Drive. Composites Science and Technology, 225, Article ID: 109476.
>https://doi.org/10.1016/j.compscitech.2022.109476
Princi, E., Vicini, S., Castro, K., Capitani, D., Proietti, N. and Mannina, L. (2009) On the Micro‐Phase Separation in Waterborne Polyurethanes. Macromolecular Chemistry and Physics, 210, 879-889.
>https://doi.org/10.1002/macp.200900013
Xi, J. and Wang, N. (2024) Synthesis of High Mechanical Strength and Thermally Recyclable and Reversible Polyurethane Adhesive by Diels-Alder Reaction. Macromolecular Chemistry and Physics, 225, Article ID: 2400199.
>https://doi.org/10.1002/macp.202400199
Yang, Z., Wang, J., Li, G., Gu, X., Yang, H., Tang, Q., et al. (2024) A Room‐Temperature Self‐Healing Anticorrosion Coating of Supramolecular Polyurethane Based on Dynamic Reversible Quadruple Hydrogen Bond. Journal of Applied Polymer Science, 141, e55441.
>https://doi.org/10.1002/app.55441
Yoshida, S., Ejima, H. and Yoshie, N. (2017) Tough Elastomers with Superior Self‐Recoverability Induced by Bioinspired Multiphase Design. Advanced Functional Materials, 27, Article ID: 1701670.
>https://doi.org/10.1002/adfm.201701670
Chen, J., Li, F., Luo, Y., Shi, Y., Ma, X., Zhang, M., et al. (2019) A Self-Healing Elastomer Based on an Intrinsic Non-Covalent Cross-Linking Mechanism. Journal of Materials Chemistry A, 7, 15207-15214.
>https://doi.org/10.1039/c9ta03775f
Fu, Z., Guo, S., Li, C., Wang, K., Zhang, Q. and Fu, Q. (2022) Hydrogen-Bond-Dominated Mechanical Stretchability in PVA Films: From Phenomenological to Numerical Insights. Physical Chemistry Chemical Physics, 24, 1885-1895.
>https://doi.org/10.1039/d1cp03893a
Luo, Y.Z., Wang, X.Y. and Ying, Y. (1997) Hydrogen-Bonding Properties of Segmented Polyether Poly(urethane Urea) Copolymer. Macromolecules, 30, 4405-4409.
>https://doi.org/10.1021/ma951386e
Cash, J.J., Kubo, T., Bapat, A.P. and Sumerlin, B.S. (2015) Room-temperature Self-Healing Polymers Based on Dynamic-Covalent Boronic Esters. Macromolecules, 48, 2098-2106.
>https://doi.org/10.1021/acs.macromol.5b00210
Xu, J., Wang, X., Zhang, X., Zhang, Y., Yang, Z., Li, S., et al. (2023) Room-temperature Self-Healing Supramolecular Polyurethanes Based on the Synergistic Strengthening of Biomimetic Hierarchical Hydrogen-Bonding Interactions and Coordination Bonds. Chemical Engineering Journal, 451, Article ID: 138673.
>https://doi.org/10.1016/j.cej.2022.138673
An, Z., Xue, R., Ye, K., Zhao, H., Liu, Y., Li, P., et al. (2023) Recent Advances in Self-Healing Polyurethane Based on Dynamic Covalent Bonds Combined with Other Self-Healing Methods. Nanoscale, 15, 6505-6520.
>https://doi.org/10.1039/d2nr07110j
Ye, J., Zhang, J., Feng, L., Liu, H., Zhu, D. and Liu, Y. (2024) Polyurethane Combining Preeminent Toughness, Puncture-Resistance, and Self-Healing Capabilities by Multiple Repair Options Based on Dual Dynamic Covalent Bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 694, Article ID: 134203.
>https://doi.org/10.1016/j.colsurfa.2024.134203
Yeh, C., Lin, C., Han, T., Xiao, Y., Chen, Y. and Chou, H. (2021) Disulfide Bond and Diels-Alder Reaction Bond Hybrid Polymers with High Stretchability, Transparency, Recyclability, and Intrinsic Dual Healability for Skin-Like Tactile Sensing. Journal of Materials Chemistry A, 9, 6109-6116.
>https://doi.org/10.1039/d0ta10135d
Zeng, W., Deng, L. and Yang, G. (2023) Self‐healable Elastomeric Network with Dynamic Disulfide, Imine, and Hydrogen Bonds for Flexible Strain Sensor. Chemistry—A European Journal, 29, e202203478.
>https://doi.org/10.1002/chem.202203478
Mottoul, M., Giljean, S., Pac, M., Landry, V. and Morin, J. (2023) Self‐Healing Polyacrylate Coatings with Dynamic H‐bonds between Urea Groups. Journal of Applied Polymer Science, 140, e53853.
>https://doi.org/10.1002/app.53853
Ye, J., Chen, S., Feng, L., Zhang, J., Liu, Y. and Zhu, D. (2024) Multi-Responsive Self-Healing Behavior of Polyurethane Modified with Photothermal and Microwave Conversion Nanoparticles. European Polymer Journal, 213, Article ID: 113080.
>https://doi.org/10.1016/j.eurpolymj.2024.113080
Martin, R., Rekondo, A., Ruiz de Luzuriaga, A., Cabañero, G., Grande, H.J. and Odriozola, I. (2014) The Processability of a Poly(urea-Urethane) Elastomer Reversibly Crosslinked with Aromatic Disulfide Bridges. Journal of Materials Chemistry A, 2, 5710.
>https://doi.org/10.1039/c3ta14927g
Ke, X., Liang, H., Xiong, L., Huang, S. and Zhu, M. (2016) Synthesis, Curing Process and Thermal Reversible Mechanism of UV Curable Polyurethane Based on Diels-Alder Structure. Progress in Organic Coatings, 100, 63-69.
>https://doi.org/10.1016/j.porgcoat.2016.03.008