Figure 2. Changes in the oxygen content of asphalt and the number of chemical bonds in the system during the aging process [4]--图2. 老化过程中沥青含氧量及主要化学键数量变化[4]--2.3. 量子化学模拟
<xref></xref>Table 1. Activation energy and free energy of reactions <xref ref-type="bibr" rid="hans.110071-6">
[6]
</xref>Table 1. Activation energy and free energy of reactions [6] 表1. 反应的活化能和自由能[1]
Reactants
Products
Product Energy (Ha)
Activation Energy (kcal/mol)
△G (kcal/mol)
ASBS1 + MDI
MASBS1
0.0577
51.922
+36.246
ASBS1 + TDI
TASBS1
−0.0217
25.246
−13.636
ASBS2 + MDI
MASBS2
−0.0036
39.624
−2.260
ASBS2 + TDI
TASBS2
0.0065
43.813
+4.091
Figure 3. Reaction energy change diagram [6]--图3. 反应能量变化图[1]--3. 老化沥青改性机理
Figure 4. Diffusion coefficient of the four components in four modifiedbitumen systems [7]--图4. 四种成分在四种改性沥青体系中的扩散系数[7]--Figure 5. Concentration distribution of the four components and CR in LDPE-8/CR-modified bitumen [7]--图5. LDPE-8/CR改性沥青中四种组分和CR的浓度分布[7]--图5. LDPE-8/CR改性沥青中四种组分和CR的浓度分布[7]Figure 5. Concentration distribution of the four components and CR in LDPE-8/CR-modified bitumen [7]--图5. LDPE-8/CR改性沥青中四种组分和CR的浓度分布[7]--图5. LDPE-8/CR改性沥青中四种组分和CR的浓度分布[7]Figure 5. Concentration distribution of the four components and CR in LDPE-8/CR-modified bitumen [7]--图5. LDPE-8/CR改性沥青中四种组分和CR的浓度分布[7]--图5. LDPE-8/CR改性沥青中四种组分和CR的浓度分布[7]
Figure 6. RDFs between CR, GR and four components of aging bitumen systems: (a) CB-RTFOT, (b) CB-PAV, (c) GB-RTFOT, (d) GB-PAV [8]--图6. CR、GR和老化沥青系统的四个组成部分之间的径向分布函数:(a) CB-RTFOT、(b) CB-PAV、(c) GB-RTFOT、(d) GB-PAV [8]--Figure 7. Molecular diffusion coefficients in the six modified bitumen systems [9]--图7. 六种改性沥青体系中的分子扩散系数[9]--Figure 8. MSCR test results of rejuvenated HVMA with different PBCRs [10]--图8. 不同PBCR对新生HVMA的MSCR检测结果[10]--
Figure 9. The diffusion coefficient curve graph of light oil (a) and heavy oil (b) [11]--图9. 轻质油(a)和重质油(b)的扩散系数曲线图[11]--
<xref></xref>Table 2. Fitting results of the diffusion coefficient-temperature curves for different components of waste cooking oil <xref ref-type="bibr" rid="hans.110071-11">
[11]
</xref>Table 2. Fitting results of the diffusion coefficient-temperature curves for different components of waste cooking oil [11] 表2. 废食用油不同组分扩散系数–温度曲线的拟合结果[11]
Figure 10. The interaction energy between SBS&asphalt model: (a) Schematic diagram of SBSMA; (b) Interaction energy [12]--图10. SBS与沥青模型之间的相互作用能:(a) SBSMA示意图;(b) 相互作用能[12]--Figure 11. The interaction energy of asphalt-asphalt model’s interface: (a) the interface situation of SBSMA and SBS-rejuvenated asphalt; (b) Interaction energy [12]--图11. 沥青–沥青模型界面的相互作用能:(a) SBSMA与SBS再生沥青的界面情况;(b) 相互作用能[12]--
Figure 15. The free volume fraction of the asphalt model [18]--图15. 各沥青模型的自由体积分数[18]--Figure 16. The MSD curves of the bitumen model [18]--图16. 各沥青模型的MSD曲线[18]--
References
Wu, M., You, Z., Jin, D., Yin, L. and Xin, K. (2024) Aging Effects on Asphalt Adhesive Properties: Molecular Dynamics Simulation of Chemical Composition and Structural Changes. Molecular Simulation, 50, 836-854. >https://doi.org/10.1080/08927022.2024.2359568
曹佃光, 张伟, 张伟光, 祝铭阳. 老化条件下基于分子模拟的SBS改性沥青自愈合性能研究[J]. 辽宁工程技术大学学报(自然科学版), 2024, 43(6): 682-691.
徐芳, 张锐, 崔达, 王擘. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[EB/OL]. 化工学报, 2024: 1-15. >http://kns.cnki.net/kcms/detail/11.1946.TQ.20241012.1643.008.html, 2025-02-07.
杨丰华. 木质素对沥青老化特性影响的分子动力学研究[J]. 合成材料老化与应用, 2022, 51(1): 56-60.
胡栋梁, 顾兴宇, 孙丽君, 等. 基于量子化学的沥青热老化与紫外老化机理[J]. 交通运输工程学报, 2023, 23(2): 141-152.
Zhang, Y., Zhou, C., Zou, P., Hu, M. and Xu, Y. (2024) Shedding Light on the Rejuvenation Mechanism of Reactive Compounds in Aged SBS-Modified Asphalt through Molecular Dynamics and Quantum Chemical Simulations. Journal of Materials in Civil Engineering, 36, Article 04024358. >https://doi.org/10.1061/jmcee7.mteng-18213
Hu, K., Zhang, T., Chen, Y., Zhang, W., Wang, D. and Du, X. (2024) Effect of Low-Density Polyethylene and Crumb Rubber Blends with Different Ultraviolet Aging Degrees on the Storage Stability of Bitumen Based on Molecular Dynamics Simulation. Journal of Materials in Civil Engineering, 36, Article 04024268. >https://doi.org/10.1061/jmcee7.mteng-17719
Xie, J., Li, S., Lin, J., Lu, Z., Ding, Z. and Gong, L. (2024) Influence of Graft-Activated Crumb Rubber on the Aging Performance of Modified Bitumen: Experimental Analysis and Molecular Dynamics Simulation. Materials Today Communications, 39, Article ID: 109249. >https://doi.org/10.1016/j.mtcomm.2024.109249
Zhang, T., Chen, Y., Hu, K., Zhang, W. and Chen, G. (2023) Investigating the Compatibility Mechanism of Bitumen Modified with Photo-Oxidative Aging of Polyethylene Using Molecular Dynamics Simulation. Journal of Materials in Civil Engineering, 35, Article 04023424. >https://doi.org/10.1061/jmcee7.mteng-15955
Hu, M., Sun, D., Hofko, B., Sun, Y., Mirwald, J. and Xu, L. (2024) Multiscale Optimization on Polymer-Based Rejuvenators for the Efficient Recycling of Aged High-Viscosity Modified Asphalt: Molecular Dynamics Simulation and Experimental Analysis. Journal of Cleaner Production, 449, Article ID: 141736. >https://doi.org/10.1016/j.jclepro.2024.141736
陈美祝, 马佳萌, 赵月超, 贺俊, 于静君. 基于分子模拟的废食用油组分在老化沥青中的扩散特性研究[EB/OL]. 化工新型材料, 1-12. >https://doi.org/10.19817/j.cnki.issn1006-3536.2025.11.036, 2025-02-11.
Shi, K., Ma, F., Liu, J., Fu, Z., Song, R., Yuan, D., et al. (2023) Rejuvenation Effect of Aged SBS-Modified Asphalt Utilizing Molecule Analysis. Journal of Cleaner Production, 405, Article ID: 136964. >https://doi.org/10.1016/j.jclepro.2023.136964
Ren, S., Liu, X. and Erkens, S. (2024) Exploring the Recovery Capacity of Recycling Agents on Atomic-Scale Energy Properties of Aged Bitumen and Their Potential Correlations with High-Temperature Rheological Performance. Materials & Design, 241, Article ID: 112957. >https://doi.org/10.1016/j.matdes.2024.112957
Ren, S., Liu, X. and Erkens, S. (2023) Towards Critical Low-Temperature Relaxation Indicators for Effective Rejuvenation Efficiency Evaluation of Rejuvenator-Aged Bitumen Blends. Journal of Cleaner Production, 426, Article ID: 139092. >https://doi.org/10.1016/j.jclepro.2023.139092
Ren, S., Liu, X., Gao, Y., Jing, R., Lin, P., Erkens, S., et al. (2023) Molecular Dynamics Simulation and Experimental Validation on the Interfacial Diffusion Behaviors of Rejuvenators in Aged Bitumen. Materials & Design, 226, Article ID: 111619. >https://doi.org/10.1016/j.matdes.2023.111619
Wang, T., Wu, J., Zhang, C., Yang, S., Dong, H., Hu, S., et al. (2024) Styrene-Butadiene-Styrene Block Copolymer Modified Bitumen with Ultraviolet Absorbent Intercalated Layered Double Hydroxide: Compatibility and Anti-Ageing Properties. Journal of Molecular Liquids, 410, Article ID: 125634. >https://doi.org/10.1016/j.molliq.2024.125634
克高果, 刘雨彤. 有机化硫酸钙晶须改性沥青抗老化性能[J]. 土木工程与管理学报, 2024, 41(6): 32-38.
金娇, 高玉超, 李锐, 等. 有机蒙脱土改性沥青抗老化性及其分子模拟试验[J]. 中国公路学报, 2022, 35(12): 24-35.
张宇, 李政, 方珑, 韩波, 王伟成, 毛自根, 刘奇, 于斌. 基于分子动力学模拟的沥青膜内氧气扩散行为研究[J]. 中外公路, 2024, 44(4): 115-126.
Li, C., Qin, W., Fu, Z., Dai, J. and Ma, F. (2023) Comparative Evaluation on Decay Process of Asphalt-Aggregate Interfaces under Solution Erosion. Construction and Building Materials, 400, Article ID: 132698. >https://doi.org/10.1016/j.conbuildmat.2023.132698
Yan, S., Dong, Q., Chen, X., Wang, X., Shi, B. and Yao, K. (2024) Impact of Waste Cooking Oil under Different Stages on Aged Asphalt-Mineral Interface Adhesion via Molecular Dynamics Simulations. Journal of Materials in Civil Engineering, 36, Article 04023628. >https://doi.org/10.1061/jmcee7.mteng-17162
Hu, M., Zhou, C., Sun, G., Hofko, B., Mirwald, J. and Sun, D. (2024) Molecular-Atomic Scale Insight on Asphalt-Aggregate Interface Interaction and Seawater Erosion with Different Aging-Resistant Materials Using Molecular Dynamics Simulations. Energy & Fuels, 38, 9438-9457. >https://doi.org/10.1021/acs.energyfuels.4c00938