2. 对象
<xref></xref>Table 1. General information of ADHD group and control group [n/(
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow>
<mover accent="true">
<mi>
x
</mi>
<mo>
¯
</mo>
</mover>
<mo>
±
</mo>
<mi>
s
</mi>
</mrow>
</math>)]Table 1. General information of ADHD group and control group [n/( x ¯ ±s )] 表1. ADHD组和对照组一般资料[例数/( x ¯ ±s )]
ADHD组
(n = 33)
对照组
(n = 26)
t/x2
df
p
性别(男/女)
25/8
18/8
0.313
1
0.576
年龄(年)
9.23 ± 1.53
9.27 ± 1.71
80.958
56
0.248
智商
107.03 ± 12.49
107.62 ± 9.92
−0.195
57
0.846
Conner得分
品行
13.33 ± 7.31
学习
6.39 ± 2.52
心身障碍
1.39 ± 1.75
冲动多动
5.94 ± 2.52
焦虑
2.64 ± 2.71
多动指数
13.88 ± 5.31
招募北京大学第六医院门诊就诊的ADHD患儿作为ADHD组,同时在社区招募正常对照组。(1) ADHD组入组标准:① 经主治及以上儿童精神科医生确诊,符合美国精神障碍诊断与统计手册第4版(Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, DSM-IV)中ADHD诊断标准(
Association, 1996
);② 年龄6~14岁;③ 视力正常,无色盲色弱;④ 韦氏儿童智力量表第四版(WISC-IV)中文版总智商(Intelligence Quotient, IQ)分数(
张厚粲,2009
)高于80;⑤ 使用半定式诊断检查表学龄儿童情感障碍和精神分裂症问卷(Kiddie Schedule for Affective Disorder and Schizophrenia for School Age Children-Present and Lifetime Version, K-SADS-PL)与儿童及其监护人进行访谈以确认诊断,未发现常见精神障碍,包括情绪障碍、焦虑障碍及精神病性障碍等;⑥ 无神经系统疾病、躯体疾病以及影响认知功能的脑部损伤史;⑦ 无ADHD相关治疗药物使用史。(2) 正常组入组标准:① 不符合DSM-IV中ADHD的诊断标准;② 年龄6~16岁;③ 无视力障碍;④ WISC-IV总智商不低于80;⑤ 根据K-SADS-PL诊断标准,未见常见精神障碍。⑥ 无神经系统疾病、躯体疾病以及影响认知功能的脑部损伤史。
4. 结果4.1. 两组P1峰值和潜伏期比较
<xref></xref>Table 2. P1 amplitude in ADHD group and control group (μV,
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow>
<mover accent="true">
<mi>
x
</mi>
<mo>
¯
</mo>
</mover>
<mo>
±
</mo>
<mi>
s
</mi>
</mrow>
</math>)Table 2. P1 amplitude in ADHD group and control group (μV, x ¯ ±s ) 表2. ADHD组和对照组P1波幅(μV, x ¯ ±s )
组别
半球
遮挡面孔
完整面孔
ADHD组
左半球
8.45 ± 1.34
8.94 ± 1.65
右半球
9.10 ± 1.53
9.25 ± 1.76
对照组
左半球
10.65 ± 1.50
12.07 ± 1.86
右半球
12.66 ± 1.72
14.02 ± 1.98
Figure 2. ERPs of P1 and NCL at O1 (Left) and O2 (Right) electrodes in ADHD group and control group--图2. ADHD组和对照组O1 (左)和O2 (右)电极点P1和NCL总波形图--
Figure 3. ERPs of N170 at PO7 (Left) and PO8 (Right) electrodes in ADHD group and control group--图3. ADHD组和对照组PO7 (左)和PO8 (右)电极点N170总波形图--
<xref></xref>Table 3. N170 latency in ADHD group and control group (ms,
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow>
<mover accent="true">
<mi>
x
</mi>
<mo>
¯
</mo>
</mover>
<mo>
±
</mo>
<mi>
s
</mi>
</mrow>
</math>)Table 3. N170 latency in ADHD group and control group (ms, x ¯ ±s ) 表3. ADHD组和对照组的N170潜伏期(ms, x ¯ ±s )
<xref></xref>Table 4. NCL amplitude and latency in ADHD group and control group (
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow>
<mover accent="true">
<mi>
x
</mi>
<mo>
¯
</mo>
</mover>
<mo>
±
</mo>
<mi>
s
</mi>
</mrow>
</math>)Table 4. NCL amplitude and latency in ADHD group and control group ( x ¯ ±s ) 表4. ADHD组和对照组NCL波幅和潜伏期( x ¯ ±s )
References
龚栩, 黄宇霞, 王妍, 罗跃嘉(2011). 中国面孔表情图片系统的修订. 中国心理卫生杂志, 25(1), 40-46.
张厚粲(2009). 韦氏儿童智力量表第四版(WISC-IV)中文版的修订. 心理科学, (5), 1177-1179.
Adra, N., Cao, A., Makris, N.,&Valera, E. M. (2021). Sensory Modulation Disorder and Its Neural Circuitry in Adults with ADHD: A Pilot Study. Brain Imaging and Behavior, 15, 930-940. >https://doi.org/10.1007/s11682-020-00302-w
Association, A. P. (1996). Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association.
Ayano, G., Demelash, S., Gizachew, Y., Tsegay, L.,&Alati, R. (2023). The Global Prevalence of Attention Deficit Hyperactivity Disorder in Children and Adolescents: An Umbrella Review of Meta-Analyses. Journal of Affective Disorders, 339, 860-866. >https://doi.org/10.1016/j.jad.2023.07.071
Butler, P. D., Abeles, I. Y., Silverstein, S. M., Dias, E. C., Weiskopf, N. G., Calderone, D. J. et al. (2013). An Event-Related Potential Examination of Contour Integration Deficits in Schizophrenia. Frontiers in Psychology, 4, Article 132. >https://doi.org/10.3389/fpsyg.2013.00132
Chapman, A. F., Chunharas, C.,&Störmer, V. S. (2023). Feature-Based Attention Warps the Perception of Visual Features. Scientific Reports, 13, Article No. 6487. >https://doi.org/10.1038/s41598-023-33488-2
Cohen, J. E., Ross, R. S.,&Stern, C. E. (2018). Predictability Matters: Role of the Hippocampus and Prefrontal Cortex in Disambiguation of Overlapping Sequences. Learning&Memory, 25, 335-346. >https://doi.org/10.1101/lm.047175.117
Delorme, A.,&Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods, 134, 9-21. >https://doi.org/10.1016/j.jneumeth.2003.10.009
Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A., Snodgrass, J. G., Schroeder, C. E. et al. (2000). Activation Timecourse of Ventral Visual Stream Object-Recognition Areas: High Density Electrical Mapping of Perceptual Closure Processes. Journal of Cognitive Neuroscience, 12, 615-621. >https://doi.org/10.1162/089892900562372
Emond, V., Joyal, C.,&Poissant, H. (2009). Neuroanatomie structurelle et fonctionnelle du trouble déficitaire d’attention avec ou sans hyperactivité (TDAH). L’Encéphale, 35, 107-114. >https://doi.org/10.1016/j.encep.2008.01.005
Grützner, C., Uhlhaas, P. J., Genc, E., Kohler, A., Singer, W.,&Wibral, M. (2010). Neuroelectromagnetic Correlates of Perceptual Closure Processes. Journal of Neuroscience, 30, 8342-8352. >https://doi.org/10.1523/jneurosci.5434-09.2010
Guo, F., Wang, C., Tao, G., Ma, H., Zhang, J.,&Wang, Y. (2024). A Longitudinal Study on the Impact of High-Altitude Hypoxia on Perceptual Processes. Psychophysiology, 61, e14548. >https://doi.org/10.1111/psyp.14548
Lenartowicz, A.,&Loo, S. K. (2014). Use of EEG to Diagnose ADHD. Current Psychiatry Reports, 16, Article No. 498. >https://doi.org/10.1007/s11920-014-0498-0
Lesinger, K., Rosenthal, G., Pierce, K., Courchesne, E., Dinstein, I.,&Avidan, G. (2023). Functional Connectivity of the Human Face Network Exhibits Right Hemispheric Lateralization from Infancy to Adulthood. Scientific Reports, 13, Article No. 20831. >https://doi.org/10.1038/s41598-023-47581-z
Liu, C., Sha, S., Zhang, X., Bian, Z., Lu, L., Hao, B. et al. (2020). The Time Course of Perceptual Closure of Incomplete Visual Objects: An Event-Related Potential Study. Computational Intelligence and Neuroscience, 2020, 1-7. >https://doi.org/10.1155/2020/8825197
Luo, X., Dang, C., Guo, J., Li, D., Wang, E., Zhu, Y. et al. (2023). Overactivated Contextual Visual Perception and Response to a Single Dose of Methylphenidate in Children with ADHD. European Archives of Psychiatry and Clinical Neuroscience, 274, 35-44. >https://doi.org/10.1007/s00406-023-01559-0
Mesulam, M. (1998). From Sensation to Cognition. Brain, 121, 1013-1052. >https://doi.org/10.1093/brain/121.6.1013
Nazari, M. A., Berquin, P., Missonnier, P., Aarabi, A., Debatisse, D., De Broca, A. et al. (2010). Visual Sensory Processing Deficit in the Occipital Region in Children with Attention-Deficit/Hyperactivity Disorder as Revealed by Event-Related Potentials during Cued Continuous Performance Test. Neurophysiologie Clinique/Clinical Neurophysiology, 40, 137-149. >https://doi.org/10.1016/j.neucli.2010.03.001
Papp, S., Tombor, L., Kakuszi, B., Balogh, L., Réthelyi, J. M., Bitter, I. et al. (2020). Impaired Early Information Processing in Adult ADHD: A High-Density ERP Study. BMC Psychiatry, 20, Article No. 292. >https://doi.org/10.1186/s12888-020-02706-w
Peasgood, T., Bhardwaj, A., Biggs, K., Brazier, J. E., Coghill, D., Cooper, C. L. et al. (2016). The Impact of ADHD on the Health and Well-Being of ADHD Children and Their Siblings. European Child&Adolescent Psychiatry, 25, 1217-1231. >https://doi.org/10.1007/s00787-016-0841-6
Ploran, E. J., Nelson, S. M., Velanova, K., Donaldson, D. I., Petersen, S. E.,&Wheeler, M. E. (2007). Evidence Accumulation and the Moment of Recognition: Dissociating Perceptual Recognition Processes Using fMRI. The Journal of Neuroscience, 27, 11912-11924. >https://doi.org/10.1523/jneurosci.3522-07.2007
Poscoliero, T.,&Girelli, M. (2018). Electrophysiological Modulation in an Effort to Complete Illusory Figures: Configuration, Illusory Contour and Closure Effects. Brain Topography, 31, 202-217. >https://doi.org/10.1007/s10548-017-0582-y
Sehatpour, P., Molholm, S., Javitt, D. C.,&Foxe, J. J. (2006). Spatiotemporal Dynamics of Human Object Recognition Processing: An Integrated High-Density Electrical Mapping and Functional Imaging Study of “Closure” Processes. NeuroImage, 29, 605-618. >https://doi.org/10.1016/j.neuroimage.2005.07.049
Shao, H., Weng, X.,&He, S. (2017). Functional Organization of the Face-Sensitive Areas in Human Occipital-Temporal Cortex. NeuroImage, 157, 129-143. >https://doi.org/10.1016/j.neuroimage.2017.05.061
Shi, J., Gong, X., Song, Z., Xie, W., Yang, Y., Sun, X. et al. (2024). EPAT: A User-Friendly MATLAB Toolbox for EEG/ERP Data Processing and Analysis. Frontiers in Neuroinformatics, 18, Article 1384250. >https://doi.org/10.3389/fninf.2024.1384250
Snodgrass, J. G.,&Feenan, K. (1990). Priming Effects in Picture Fragment Completion: Support for the Perceptual Closure Hypothesis. Journal of Experimental Psychology: General, 119, 276-296. >https://doi.org/10.1037//0096-3445.119.3.276
Tanaka, J. W.,&Simonyi, D. (2016). The “Parts and Wholes” of Face Recognition: A Review of the Literature. Quarterly Journal of Experimental Psychology, 69, 1876-1889. >https://doi.org/10.1080/17470218.2016.1146780
Usler, E., Foti, D.,&Weber, C. (2020). Emotional Reactivity and Regulation in 5 to 8-Year-Old Children: An ERP Study of Own-Age Face Processing. International Journal of Psychophysiology, 156, 60-68. >https://doi.org/10.1016/j.ijpsycho.2020.07.004
Yasumura, A., Omori, M., Fukuda, A., Takahashi, J., Yasumura, Y., Nakagawa, E. et al. (2019). Age-Related Differences in Frontal Lobe Function in Children with ADHD. Brain and Development, 41, 577-586. >https://doi.org/10.1016/j.braindev.2019.03.006
Zhang, J., Yang, X., Jin, Z.,&Li, L. (2021). Where There Is No Object Formation, There Is No Perceptual Organization: Evidence from the Configural Superiority Effect. NeuroImage, 237, Article 118108. >https://doi.org/10.1016/j.neuroimage.2021.118108