ojns Open Journal of Natural Science 2330-1724 2330-1732 beplay体育官网网页版等您来挑战! 10.12677/ojns.2025.132037 ojns-109605 Articles 数学与物理, 地球与环境, 信息通讯, 生命科学, 化学与材料 抗生素与重金属联合暴露对抗生素抗性基因 影响的研究进展
Research Progress on the Effects of Combined Exposure to Antibiotics and Heavy Metals on Antibiotic Resistance Genes
邱红木 贵州楚天环境检测咨询有限公司,贵州 贵阳 03 03 2025 13 02 359 368 24 1 :2025 11 1 :2025 11 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 抗生素抗性基因(ARGs)已被列为新兴环境污染物,其传播和环境演变成为生态环境领域的重要研究主题。抗生素和重金属(HMs)作为两种典型污染物,在多种环境介质中普遍共存,容易导致抗生素与重金属的复合污染,会对微生物造成压力,从而显著诱导ARGs的传播。近年来,抗生素与重金属联合污染的问题愈发严重,特别是在抗生素抗性基因(ARGs)、重金属抗性基因(MRGs)、抗生素抗性细菌(ARB)以及抗生素–重金属复合物(AMCs)的生成和传播方面,对生态系统及人类健康构成了严重威胁。本综述深入分析了抗生素和重金属在环境中的主要来源、联合暴露机制、环境归宿、潜在风险及其防控策略等,旨在为未来的研究提供理论依据和决策参考。
Antibiotic resistance genes (ARGs) have been listed as emerging environmental pollutants, and their transmission and environmental evolution have become important research topics in the field of ecological environment. Antibiotics and heavy metals (HMs), as two typical pollutants, commonly coexist in various environmental media, which can easily lead to compound pollution of antibiotics and heavy metals, causing pressure on microorganisms and significantly inducing the spread of ARGs. In recent years, the problem of combined pollution of antibiotics and heavy metals has become increasingly serious, especially in the generation and spread of antibiotic resistance genes (ARGs), heavy metal resistance genes (MRGs), antibiotic resistant bacteria (ARBs), and antibiotic heavy metal complexes (AMCs), posing a serious threat to ecosystems and human health. This review provides an in-depth analysis of the main sources, joint exposure mechanisms, environmental fate, potential risks, and prevention and control strategies of antibiotics and heavy metals in the environment, aiming to provide theoretical basis and decision-making references for future research.
抗生素,重金属,抗生素抗性基因,联合毒性
Antibiotics
Heavy Metals Antibiotic Resistance Genes Joint Toxicity
1. 引言

我国是抗生素生产和使用大国,抗生素主要包括磺胺类、喹诺酮类、四环素类、大环内酯类、β-内酰胺类和氯霉素类。据相关报道,2000年至2015年间,全球抗生素消费量从211亿增长到348亿,增幅约为65%。若不采取有效措施加以控制,预计到2030年,世界人口密集国家的抗生素消费量将增长200% [1] 。全球抗生素消费的快速增长,显著加剧了细菌抗生素耐药性的产生,进而推动了抗生素耐药细菌(ARB)和抗生素耐药基因(ARGs)的出现与传播,使其成为当前全球公共卫生领域面临的重大威胁之一。

与抗生素类似,重金属(HMs)作为环境介质中的常见污染物,因其高毒性和持久性,已成为公众和学者关注的焦点。研究表明,大气沉降 [1] 、固体废物堆放 [2] 、废水灌溉 [3] 以及农业投入品的使用 [4] 是外源重金属和重金属抗性基因进入土壤的主要途径。特别是在农业土壤中,与锌(Zn)、铜(Cu)和汞(Hg)相关的重金属抗性基因频繁检出 [5] [6]

抗生素和重金属(HMs)并不是单独存在于环境中,而是以复合污染的形式出现。这种复合污染的生态效应和环境风险取决于二者之间的复杂相互作用。为了适应抗生素与重金属的复合污染环境,微生物通过自我进化产生了多种共选择性耐药机制,包括共耐药 [7] 、交叉耐药 [8] 、共调节 [9] 和生物膜诱导 [10] 。这些机制的形成不仅增强了微生物对污染物的耐受性,还显著增加了抗生素耐药基因(ARGs)发生水平基因转移(HGT)的风险。值得注意的是,与抗生素类似,重金属能够刺激细菌的应激反应,主要表现为细胞内活性氧(ROS)的形成、细菌SOS反应以及细胞膜、DNA或蛋白质的损伤 [11] [12] 。Gaidhani等人 [13] 观察到,浮游溶血不动杆菌在应激反应形成生物膜后,对多种抗生素(如庆大霉素、妥布霉素、多粘菌素B、利福平)和重金属盐(如AgNO3和HgCl2)的耐药性显著增强,且随着生物膜生长而进一步提高。这些应激反应进一步加速了质粒介导的ARGs转移,成为水平转移(HGT)的典型表现形式。

抗生素、重金属、抗性基因(ARGs和MRGs)、抗生素耐药细菌(ARB)和抗生素–重金属复合物(AMCs)在不同环境介质之间的转移和传播,构成了抗生素–重金属复合污染系统的动态过程。这一过程不仅对微生物 [14] 、植物 [15] 和动物 [16] 构成严重威胁,还可能通过食物链传递对人类健康产生不利影响 [17]

尽管近年来关于抗生素与重金属(HMs)复合污染的研究逐年增加,但与抗生素或重金属单一污染的研究相比,仍显得极为有限。尤其是缺乏对两者复合污染的全面系统性阐述。为弥补这一研究空白,本文在梳理抗生素和重金属的主要来源的基础上,系统总结了二者之间的复合机制。同时,本文详细探讨了抗生素与重金属复合污染系统中多种污染物在不同环境介质中的环境归趋,以及由此引发的环境生态风险和人类健康风险。最后,针对现有研究中存在的主要挑战,提出了切实可行的展望,旨在为未来环境中抗生素与重金属联合污染的研究提供新的思路和方向。

2. 主要来源和复合机制 2.1. 主要来源

有研究发现污水处理厂产生的污泥中含大量抗生素和重金属的抗性细菌,排放后,各类抗性基因会进入环境中 [18] 。水产养殖场常有ARGs和MRGs检出,有研究发现四环素类的抗性基因tetE与铜的抗性基因cueR位于同一质粒上 [19]

在人为活动影响下,粪便和污泥的土地施用以及废水灌溉成为土壤中抗生素、耐药细菌(ARB)和ARGs的主要污染来源。大环内酯类、喹诺酮类、磺胺类和四环素类作为四大类兽用抗生素,在施肥土壤中常被检出生物活性浓度 [20] 。然而,传统废水处理厂难以完全去除这些新兴污染物。污泥作为废水处理厂的副产品,是残留抗生素、ARB和ARGs的重要储存库 [21] ,几乎所有主要类别的抗生素均以亚致死浓度存在,浓度范围为ng至mg/kg干重。例如,研究发现污泥中磺胺类抗生素平均含量为55.4 μg/kg干重,四环素类抗生素平均含量为8326 μg/kg干重 [22] 。目前,ARGs在各种环境介质中均有检出。吴英等 [23] 对嘉兴市主要旅游景区内地表水进行检测,检测出tetC,tetM,tetO,tetQ,tetW,sul1和sul2等7种四环素类抗性基因以及磺胺类抗性基因。都阳湖表层水中也检测到多种ARGs,包括7种四环素类抗性基因3种磺胺类抗性基因和2种喹诺酮类抗性基因 [24]

土壤环境中重金属(HMs)和重金属抗性基因(MRGs)的污染来源广泛,主要包括农业投入品的长期使用、废水灌溉、大气沉降和固体废物倾倒。近年来,施用富含营养的有机肥料(如污泥和粪肥)被视为减少化肥和农药投入的重要措施。研究发现,在22个污水处理厂的污泥中检测到多种重金属及其类似物,且污泥中存在42种针对14种重金属的抗性基因(MRGs),其中6种在高温厌氧堆肥后未显著变化 [11] 。与抗生素类似,长期施用粪肥也会导致土壤中重金属的积累,进一步加剧污染风险。

人类活动(如交通、工业燃煤、矿山开采和金属冶炼)是大气中重金属(HMs)的重要来源,这些重金属可通过大气沉降进入土壤。交通排放是城市、郊区及路边土壤中重金属积累的主要来源之一。例如,北京道路两侧土壤中铅(Pb)和锌(Zn)的浓度因车辆排放显著增加 [25] 。据报道,中国某大型铜冶炼厂在经历6个月的大气重金属沉降后,高沉积区域土壤中铜(Cu)和镉(Cd)的浓度显著上升 [1]

2.2. 联合暴露机制

微生物在面对环境中残留抗生素的直接选择压力时,主要通过以下方式获得抗生素耐药性:表达潜在的抗生素耐药基因(ARGs)、染色体基因突变产生ARGs,或通过垂直基因转移(VGT)和水平基因转移(HGT)获得外源ARGs [26] 。在重金属(HMs)污染的环境中,HMs的持久性和难降解性使其成为一种持续的选择压力。长期暴露于HMs胁迫下的微生物可通过诱导重金属抗性基因(MRGs)的产生来抵御其毒性。有趣的是,细菌的抗生素耐药系统和重金属耐药系统具有相似的结构和功能特征,表明具有HMs耐药性的微生物也可能对抗生素产生耐药性。Gupta等人 [27] 发现,HMs耐药性与抗生素耐药性之间存在显著关联(r > 0.60, p < 0.05),说明两者通过相同或相关机制相互联系。Zhou等人 [28] 指出,ARGs和MRGs与粪便中HMs的含量极显著相关(p < 0.01),表明HMs不仅促进重金属抗性,还通过共选择机制富集ARGs。除此之外,LIMA等 [29] 研究发现,在伤寒沙门氏菌(Salmonella Typhi)中还在SGI11基因组岛上同样共存着ARGs (blaTEM-1、catA1、strA、strB、sul1、sul2、dfrA7)和MRGs (merE、merD、merA、merC、merP、merT、merR)。

目前,微生物对抗生素和HMs的共选择性耐药机制可分为四种类型:共耐药、交叉耐药、共调节和生物膜诱导。研究表明,形成生物膜的细菌比浮游细菌对HMs和抗生素的耐受性更强,这主要是因为生物膜诱导机制使浮游细菌产生细胞外聚合物物质(EPS),增强其对外源物质的抵抗力 [30] 。从上述机制来看,抗生素并非ARGs发展的唯一驱动因素。即使在抗生素水平较低或不存在的情况下,HMs也与MRGs和ARGs呈显著正相关,尤其是长期高浓度的HMs暴露会显著增加ARGs和MRGs的丰度 [31] 。与抗生素的短半衰期和生物降解性不同,HMs具有剧毒、持久且难以降解的特性,可能对微生物产生更长期、更顽固的选择压力,诱导的抗生素耐药性甚至可能比抗生素本身更显著。综上所述,HMs能够在抗生素水平较低或不存在的情况下维持和促进细菌的抗生素耐药性,导致ARGs污染水平升高。

近年来,研究表明ARGs的结合转移频率与细菌的应激反应呈正相关,氧化应激在促进质粒介导的接合转移中起关键作用。与抗生素类似,重金属(HMs)也能在细胞和遗传水平上诱导细菌应激反应 [32] [33] 。细菌中的可移动遗传元件(MGEs)是ARGs和MRGs进行水平转移的主要载体,能促进基因重组 [34] ,促使ARGs和MRGs在不断重组、水平转移过程中形成联合抗性 [35] 。细菌中的氧化应激通常伴随着活性氧(ROS)的产生,主要由超氧阴离(∙O2)子、过氧化氢(H2O2)和羟基自由基(∙OH)组成 [36] [37] 。高水平的ROS是促进ARGs结合转移的重要因素。研究表明,HMs作为非抗生素应激源,通过增加细胞内ROS水平加速ARGs的结合转移。机制分析表明 [38] - [40] ,HMs暴露促使供体和受体细菌产生和积累过量ROS,加速粘附菌毛的形成和质粒复制,激活SOS反应,并对细胞膜、DNA或蛋白质造成损伤,从而加速ARGs的质粒介导转移。

亚抑制浓度的HMs与细胞内ROS的产生增加相关,可能促进ARGs的结合转移,进而增加ARGs污染水平。Lin的团队 [41] 指出,Pb(II) (0.5 mmol/L)、As(V) (0.1 mmol/L)和Hg(II) (0.005 mmol/L)的亚抑制浓度也可促进质粒从供体大肠杆菌MG1655到受体污泥细菌群落的ARGs结合转移。然而,高浓度Hg(II) (1.0 mg/L)会导致细菌细胞膜严重损伤,抑制ARGs的结合转移 [42] 。因此,只有适度的细胞膜损伤才有利于ARGs的结合转移。Lu等 [43] 研究发现,AgNPs和Ag(I)暴露能够诱导产生ROS,造成细菌细胞膜损伤并做出应激响应,从而促进RP4质粒发生水平转移。在ARGs水平转移过程中,全局调控基因(korA、korB和trbA等基因)主要负责质粒的转移、复制和稳定性,进而调控其转移过程。Zhang等 [44] 研究表明,当Cu(II)、Ag(I)、Cr(VI)和Zn(II)暴露时,korA、korB和trbA基因表达水平出现不同程度的下调。类似地,Pu等 [45] 研究发现,Cd(II)暴露在浓度为1~100 mg·L−1时,能够显著提高细菌细胞膜渗透性,当浓度为100 mg·L−1时,其可以显著增强交配对形成基因trbBp的表达水平及DNA转移水平,进而提高RP4质粒的接合转移频率,促进质粒接合转移。

近年来,研究人员逐渐关注抗生素和HMs联合污染在不同环境介质中的毒性效应,发现其共存对生物体和生态系统具有普遍的联合毒性,表现为协同(1 + 1 > 2)、拮抗(1 + 1 < 2)或相加(1 + 1 = 2)效应 [38] 。这种联合毒性与抗生素和HMs的浓度组合、暴露时间和生物体种类密切相关。例如,在土壤环境中,磺胺二甲嘧啶(SMZ)和镉的共同暴露对土壤潜在硝化速率(PNR)和氨氧化微生物群落的影响因添加浓度和暴露时间而异,表现出协同或拮抗效应 [46] 。此外,磺胺二甲氧嘧啶(SM2)和铜的联合污染对细菌和真菌主要表现为协同作用,而对放线菌则表现为拮抗作用 [47]

抗生素和HMs的联合毒性还取决于它们之间的潜在相互作用,如络合作用,这使得其生态毒性更加复杂 [48] 。抗生素通常含有大量电子供体原子或官能团(如羟基、羧基、氨基和杂环基),这些官能团不仅决定了抗生素的药理性质,还易与二价或三价金属阳离子(如Cu2⁺、Zn2⁺、Fe3⁺和Al3⁺)络合,形成稳定的抗生素-金属复合物(AMCs) [49] 。抗生素的组成和官能团数量 [51] 、金属离子的类型 [50] 以及环境pH值 [51] 是影响AMCs形成的三个关键因素,其最终络合程度取决于三者的综合作用。与游离抗生素和HMs相比,AMCs的物理化学性质发生改变,进而影响其环境行为和生态毒理学效应 [52] ,可能导致更复杂的联合污染问题。

然而,目前大多数联合毒性评估忽略了络合的存在,这可能低估或高估联合系统的风险。因此,进一步研究抗生素与HMs之间的联合毒性及其相互作用机制,对于准确评估其环境和生态风险并采取有效控制措施至关重要。

为预测和判别混合物的联合作用,Bliss [53] 在1939年首次将混合物的联合毒性作用类型划分为相加、协同和拮抗三种类型。经过几十年的发展,已经有了许多方法来评估污染物之间的联合作用。一般而言,这些方法可以分为两类:图示法和指数法。图示法在评估混合污染时通常具有直观和易于理解的优点,但大多数图示法只适用于评估两种或三种污染物的联合作用,对于三种以上的混合物的联合作用很难进行定性或定量评估 [54] 。为了更准确地定性污染物之间的相互作用,指数法逐渐得到了发展。指数法主要包括毒性单位法(TU) [55] 、相加指数法(AI) [56] 、混合毒性指数法(MTI) [57] 等,其中采用TU来表征混合物的联合毒性效应应用最广泛 [58] ;TU单位法可判断有机混合物联合作用的强弱,如混合物的TU > 1.2,则TU值越大拮抗作用越强,混合物的TU < 0.8,则TU值越小,协同作用越强,而1.2 > TU > 0.8时,则为相加作用 [56]

3. 环境归趋和潜在风险 3.1. 环境归趋

抗生素、重金属(HMs)及其抗性基因(ARGs和MRGs)和耐药细菌(ARBs)在环境中的传播和扩散是当前亟待解决的重要问题之一。研究表明,这些污染物进入土壤后,可在土壤、植物、动物、水和大气等环境介质中迁移和传播,并通过食物链或环境暴露(如皮肤接触和吸入)影响人类健康。具体而言,进入土壤的游离态抗生素和HMs主要通过吸附、解吸、降解和转化等物理、化学和生物过程发生衰减 [59] [60] 。与此同时,未降解的抗生素和HMs以及诱导产生的抗性基因和ARBs会进一步影响土壤–植物/动物系统 [61] 。此外,抗生素-重金属复合物(AMCs)的形成也会改变抗生素和HMs的毒性特征。

值得注意的是,土壤中丰富的微生物不仅是ARGs和MRGs的主要载体和传播者,还在污染物降解和生物地球化学循环中发挥关键作用。研究表明 [62] ,土壤微生物群落可能对其他生物体的微生物组产生重要影响,进而对土壤、植物、动物和人类健康产生直接或间接的效应。此外,在土壤–空气系统中,携带ARGs和MRGs的ARBs可附着于颗粒物上,通过风力和沉积作用在土壤与大气之间迁移,并以气溶胶形式存在于大气中 [63] 。这些复杂的环境归趋行为极有可能引发生态风险和人类健康风险,需予以高度重视。

3.2. 潜在风险

当前,抗生素与重金属(HMs)复合污染的研究不断深入,其对生态系统和人类健康的潜在风险也日益受到关注。研究表明,抗生素与重金属的复合污染对土壤酶活性和微生物群落具有显著影响。例如,阮存鑫 [64] 在乌栅土中发现,四环素-Cu复合污染对脲酶和蔗糖酶活性的抑制作用高于单一污染,而在红壤中,络合物对酸性磷酸酶和脲酶的毒性则低于单一污染。此外,闫雷等 [65] 研究发现,Cd与土霉素复合污染对酶活性的抑制作用因土霉素浓度而异:低浓度和高浓度时抑制作用低于单一污染,而适中浓度时抑制作用增强。Kong等 [66] 发现,Cu和土霉素复合污染显著降低了土壤微生物的功能多样性、均匀性和底物利用率。在动植物毒性方面,复合污染的影响也因污染物种类和浓度而异。Huang等 [67] 研究发现,Cu与环丙沙星复合污染对蚯蚓的毒性显著低于单一污染物,推测是由于二者络合降低了Cu的毒性。在植物方面,抗生素与重金属的复合污染对植物根部的毒性主要表现为抑制作用,且毒性高于单一污染 [68] 。赵祥等 [69] 则发现,抗生素与Cu形成的络合物对蚕豆根尖细胞的毒性随络合比例增加先降低后升高。

此外,抗生素和重金属的复合污染还可能通过食物链传播,对人类健康构成威胁。HMs和抗生素可通过共选择机制驱动微生物耐药性的发展,尽管大多数携带抗生素耐药基因(ARGs)的微生物是非致病性的,但它们可能通过水平基因转移(HGT)将ARGs传递给人类致病菌(HPB) [70] 。研究表明,复合污染不仅增加了污染物的不确定性和复杂性,还显著加剧了环境污染风险。

总之,抗生素与重金属的复合污染对生态系统和人类健康的潜在威胁不容忽视,亟需进一步研究其环境行为和风险评估,以制定有效的防控策略。

3.3. 防控策略

为避免环境中抗生素与重金属的复合污染,需采取措施控制这些污染源。例如在土壤环境中,堆肥和消化是广泛应用的处理技术,具有无害化处理、资源化和可持续利用 [71] ,对控制粪便和污泥中的抗生素、重金属、抗性基因(ARGs)和移动抗性基因(MRGs)具有积极作用。Cao等人 [72] 指出,添加芽孢杆菌在不同程度上降低了工业好氧堆肥过程中重金属的生物利用度,并显著降低了抗性基因的水平,如intl1和oqxB。在芽孢杆菌的竞争和高温的双重压力下,一些致病菌也被灭活。

对于已经进入生态系统的抗生素、HMs、ARGs、MRGs、ARBs和AMCs,降低其流动性和生物利用度是控制生态风险的常用措施。常用的高效吸附和固定材料包括粘土矿物、金属氧化物、纳米复合材料和生物炭等。目前的土壤修复策略包括土壤清洗、电动修复、植物修复、动物修复和生物修复等。相比之下,电动修复是一种更理想、更经济的原位土壤修复技术,具有成本低、自动化操作和效率高等优点。Li等人 [73] 的研究表明,电动修复对土壤中Cu和Zn的去除效率显著提高,对tetM和tetW抗性基因的去除效果优于tetC和tetG基因,同时显著抑制了抗性细菌的活性,其中抗OTC细菌的平均去除率高于抗SMX细菌。

植物修复是一种利用植物积累、固定、挥发或降解土壤污染物的绿色修复技术,具有经济环保的优点,可替代部分物理和化学修复方法。Li等人 [74] 发现,在碱性土壤中,紫茉莉和万寿菊这两种观赏性超积累植物对镉具有很强的积累能力。动物修复则是借助土壤动物及其肠道微生物,通过一系列土壤活动过程富集、消化和分解污染物。微生物修复主要利用本土微生物或人工驯化的功能微生物降解、转化和去除土壤污染物。近年来,生物炭–微生物复合修复技术逐渐受到关注。在抗生素-HMs污染的土壤中,Duan等人 [75] 进一步发现,纳米生物炭与蜡样芽孢杆菌的联合应用不仅更有利于降低Cu的生物利用度,而且抑制了Cu与ARGs的共选择,降低了ARGs的丰度,减轻了它们在土壤–莴苣生态系统中的繁殖。

4. 展望

目前,作为环境领域的热点问题,抗生素与重金属(HMs)在环境中的复合污染已受到广泛关注。近年来,研究在来源、复合机制、环境归趋、潜在风险及阻控与衰减策略等方面取得了一定进展,但联合污染的研究仍处于探索阶段。未来需进一步开展以下研究:

(1) 深入研究抗生素–重金属联合暴露对质粒介导的ARGs水平转移过程影响的内在作用分子机制。

(2) 系统研究不同环境介质中抗生素与重金属联合暴露对ARGs丰度和水平转移的协同选择性效应,为研发有效的ARGs污染控制技术提供理论基础。

(3) 对于生态系统中抗生素HMs复合污染的高风险区域,必须进一步开发新的环保、低成本、方便、高效的阻隔材料,以预防和控制各种污染物在土壤复合污染系统中的传播和扩散。此外,积极寻求替代产品,以及加强源头监督和处罚,也是预防和控制农业土壤中抗生素与HMs复合污染的有效措施。

(4) 生态系统中抗生素-HMs复合污染系统中有许多污染物,单一修复技术往往难以达到理想的修复效果,在成本、去除周期和效果方面仍有待提升。进一步发展协同多种修复技术的联合修复技术是一种可行的替代方案,可以发挥各自的优势,弥补不足,实现多种污染物的同时处理。

References Liu, H., Zhou, J., Li, M., Hu, Y., Liu, X. and Zhou, J. (2019) Study of the Bioavailability of Heavy Metals from Atmospheric Deposition on the Soil-Pakchoi (Brassica chinensis L.) System. Journal of Hazardous Materials, 362, 9-16. >https://doi.org/10.1016/j.jhazmat.2018.09.032 Chen, H., Wang, L., Hu, B., Xu, J. and Liu, X. (2022) Potential Driving Forces and Probabilistic Health Risks of Heavy Metal Accumulation in the Soils from an E-Waste Area, Southeast China. Chemosphere, 289, Article ID: 133182. >https://doi.org/10.1016/j.chemosphere.2021.133182 Xi, B., Yu, H., Li, Y., Dang, Q., Tan, W., Wang, Y., et al. (2021) Insights into the Effects of Heavy Metal Pressure Driven by Long-Term Treated Wastewater Irrigation on Bacterial Communities and Nitrogen-Transforming Genes along Vertical Soil Profiles. Journal of Hazardous Materials, 403, Article ID: 123853. >https://doi.org/10.1016/j.jhazmat.2020.123853 Qian, X., Wang, Z., Shen, G., Chen, X., Tang, Z., Guo, C., et al. (2018) Heavy Metals Accumulation in Soil after 4 Years of Continuous Land Application of Swine Manure: A Field-Scale Monitoring and Modeling Estimation. Chemosphere, 210, 1029-1034. >https://doi.org/10.1016/j.chemosphere.2018.07.107 Zhang, H., Zhang, Q., Song, J., Zhang, Z., Chen, S., Long, Z., et al. (2020) Tracking Resistomes, Virulence Genes, and Bacterial Pathogens in Long-Term Manure-Amended Greenhouse Soils. Journal of Hazardous Materials, 396, Article ID: 122618. >https://doi.org/10.1016/j.jhazmat.2020.122618 Zhao, W., Deng, J., Chi, S., Wang, W., Xu, L., Huang, Q., et al. (2022) Sustainability Assessment of Topsoil Ecology in Chongqing, China Based on the Application of Livestock and Poultry Manure. Journal of Cleaner Production, 358, Article ID: 131969. >https://doi.org/10.1016/j.jclepro.2022.131969 Farias, P., Espírito Santo, C., Branco, R., Francisco, R., Santos, S., Hansen, L., et al. (2015) Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields. Applied and Environmental Microbiology, 81, 2534-2543. >https://doi.org/10.1128/aem.03240-14 Chen, D., Li, X., Ni, L., Xu, D., Xu, Y., Ding, Y., et al. (2021) First Experimental Evidence for the Presence of Potentially Toxic Vibrio Cholerae in Snails, and Virulence, Cross-Resistance and Genetic Diversity of the Bacterium in 36 Species of Aquatic Food Animals. Antibiotics, 10, Article 412. >https://doi.org/10.3390/antibiotics10040412 Chen, S., Li, X., Sun, G., Zhang, Y., Su, J. and Ye, J. (2015) Heavy Metal Induced Antibiotic Resistance in Bacterium Lsjc7. International Journal of Molecular Sciences, 16, 23390-23404. >https://doi.org/10.3390/ijms161023390 Tan, Y., Cao, X., Chen, S., Ao, X., Li, J., Hu, K., et al. (2023) Antibiotic and Heavy Metal Resistance Genes in Sewage Sludge Survive during Aerobic Composting. Science of The Total Environment, 866, Article ID: 161386. >https://doi.org/10.1016/j.scitotenv.2023.161386 Wang, Z.F., Yun, H., Li, S., Ji, J., Khan, A., Fu, X.L., et al. (2022) Factors Influencing the Transfer and Abundance of Antibiotic Resistance Genes in Livestock Environments in China. International Journal of Environmental Science and Technology, 20, 2197-2208. >https://doi.org/10.1007/s13762-022-04031-z Zhang, Y., Gu, A.Z., Cen, T., Li, X., He, M., Li, D., et al. (2018) Sub-Inhibitory Concentrations of Heavy Metals Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes in Water Environment. Environmental Pollution, 237, 74-82. >https://doi.org/10.1016/j.envpol.2018.01.032 Gaidhani, S.V., Raskar, A.V., Poddar, S., et al. (2014) Time Dependent Enhanced Resistance against Antibiotics&Metal Salts by Planktonic&Biofilm Form of Acinetobacter haemolyticus MMC 8 Clinical Isolate. Indian Journal of Medical Research, 140, 665-671. Gao, M., Song, W., Zhou, Q., Ma, X. and Chen, X. (2013) Interactive Effect of Oxytetracycline and Lead on Soil Enzymatic Activity and Microbial Biomass. Environmental Toxicology and Pharmacology, 36, 667-674. >https://doi.org/10.1016/j.etap.2013.07.003 Xu, Y., Yu, W., Ma, Q., Zhou, H. and Jiang, C. (2017) Toxicity of Sulfadiazine and Copper and Their Interaction to Wheat (Triticum aestivum L.) Seedlings. Ecotoxicology and Environmental Safety, 142, 250-256. >https://doi.org/10.1016/j.ecoenv.2017.04.007 Yu, Z., Yin, D. and Deng, H. (2015) The Combinational Effects between Sulfonamides and Metals on Nematode Caenorhabditis Elegans. Ecotoxicology and Environmental Safety, 111, 66-71. >https://doi.org/10.1016/j.ecoenv.2014.09.026 Nguyen, C.C., Hugie, C.N., Kile, M.L. and Navab-Daneshmand, T. (2019) Association between Heavy Metals and Antibiotic-Resistant Human Pathogens in Environmental Reservoirs: A Review. Frontiers of Environmental Science & Engineering, 13, Article No. 46. >https://doi.org/10.1007/s11783-019-1129-0 Zhang, J., Yang, M., Zhong, H., Liu, M., Sui, Q., Zheng, L., et al. (2018) Deciphering the Factors Influencing the Discrepant Fate of Antibiotic Resistance Genes in Sludge and Water Phases during Municipal Wastewater Treatment. Bioresource Technology, 265, 310-319. >https://doi.org/10.1016/j.biortech.2018.06.021 Agga, G.E., Scott, H.M., Amachawadi, R.G., Nagaraja, T.G., Vinasco, J., Bai, J., et al. (2014) Effects of Chlortetracycline and Copper Supplementation on Antimicrobial Resistance of Fecal Escherichia Coli from Weaned Pigs. Preventive Veterinary Medicine, 114, 231-246. >https://doi.org/10.1016/j.prevetmed.2014.02.010 Kuppusamy, S., Kakarla, D., Venkateswarlu, K., Megharaj, M., Yoon, Y. and Lee, Y.B. (2018) Veterinary Antibiotics (VAs) Contamination as a Global Agro-Ecological Issue: A Critical View. Agriculture, Ecosystems & Environment, 257, 47-59. >https://doi.org/10.1016/j.agee.2018.01.026 Wang, J., Chu, L., Wojnárovits, L. and Takács, E. (2020) Occurrence and Fate of Antibiotics, Antibiotic Resistant Genes (ARGs) and Antibiotic Resistant Bacteria (ARB) in Municipal Wastewater Treatment Plant: An Overview. Science of the Total Environment, 744, Article ID: 140997. >https://doi.org/10.1016/j.scitotenv.2020.140997 Cheng, M., Wu, L., Huang, Y., Luo, Y. and Christie, P. (2014) Total Concentrations of Heavy Metals and Occurrence of Antibiotics in Sewage Sludges from Cities Throughout China. Journal of Soils and Sediments, 14, 1123-1135. >https://doi.org/10.1007/s11368-014-0850-3 吴英, 周明良, 张波, 等. 嘉兴市主要旅游景区地表水中四环素和磺胺类抗生素抗性基因的污染现状调查[J]. 环境保护与循环经济, 2016, 36(9): 52-54. 付瑾瑾, 白昱慧, 朱晓玲, 等. 西溪湿地中四环素类和磺胺类抗性基因的污染现状[J]. 杭州师范大学学报(自然科学版), 2020, 19(6): 39-47. Yang, J., Wang, J., Qiao, P., Zheng, Y., Yang, J., Chen, T., et al. (2020) Identifying Factors That Influence Soil Heavy Metals by Using Categorical Regression Analysis: A Case Study in Beijing, China. Frontiers of Environmental Science & Engineering, 14, Article No. 37. >https://doi.org/10.1007/s11783-019-1216-2 Hu, Y., Gao, G.F. and Zhu, B. (2017) The Antibiotic Resistome: Gene Flow in Environments, Animals and Human Beings. Frontiers of Medicine, 11, 161-168. >https://doi.org/10.1007/s11684-017-0531-x Gupta, S., Graham, D.W., Sreekrishnan, T.R. and Ahammad, S.Z. (2023) Heavy Metal and Antibiotic Resistance in Four Indian and UK Rivers with Different Levels and Types of Water Pollution. Science of the Total Environment, 857, Article ID: 159059. >https://doi.org/10.1016/j.scitotenv.2022.159059 Zhou, B., Wang, C., Zhao, Q., Wang, Y., Huo, M., Wang, J., et al. (2016) Prevalence and Dissemination of Antibiotic Resistance Genes and Coselection of Heavy Metals in Chinese Dairy Farms. Journal of Hazardous Materials, 320, 10-17. >https://doi.org/10.1016/j.jhazmat.2016.08.007 Lima, N.C.B., Tanmoy, A.M., Westeel, E., de Almeida, L.G.P., Rajoharison, A., Islam, M., et al. (2019) Analysis of Isolates from Bangladesh Highlights Multiple Ways to Carry Resistance Genes in Salmonella Typhi. BMC Genomics, 20, Article No. 530. >https://doi.org/10.1186/s12864-019-5916-6 Teitzel, G.M. and Parsek, M.R. (2003) Heavy Metal Resistance of Biofilm and Planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology, 69, 2313-2320. >https://doi.org/10.1128/aem.69.4.2313-2320.2003 Gupta, S., Graham, D.W., Sreekrishnan, T.R. and Ahammad, S.Z. (2022) Effects of Heavy Metals Pollution on the Co-Selection of Metal and Antibiotic Resistance in Urban Rivers in UK and India. Environmental Pollution, 306, Article ID: 119326. >https://doi.org/10.1016/j.envpol.2022.119326 Ding, P., Lu, J., Wang, Y., Schembri, M.A. and Guo, J. (2022) Antidepressants Promote the Spread of Antibiotic Resistance via Horizontally Conjugative Gene Transfer. Environmental Microbiology, 24, 5261-5276. >https://doi.org/10.1111/1462-2920.16165 Wang, Y., Lu, J., Mao, L., Li, J., Yuan, Z., Bond, P.L., et al. (2018) Antiepileptic Drug Carbamazepine Promotes Horizontal Transfer of Plasmid-Borne Multi-Antibiotic Resistance Genes within and across Bacterial Genera. The ISME Journal, 13, 509-522. >https://doi.org/10.1038/s41396-018-0275-x Frost, L.S., Leplae, R., Summers, A.O. and Toussaint, A. (2005) Mobile Genetic Elements: The Agents of Open Source Evolution. Nature Reviews Microbiology, 3, 722-732. >https://doi.org/10.1038/nrmicro1235 Lau, S.Y. and Zgurskaya, H.I. (2005) Cell Division Defects in Escherichia coli Deficient in the Multidrug Efflux Transporter AcrEF-TolC. Journal of Bacteriology, 187, 7815-7825. >https://doi.org/10.1128/jb.187.22.7815-7825.2005 Zhang, H., Song, J., Zheng, Z., Li, T., Shi, N., Han, Y., et al. (2023) Fungicide Exposure Accelerated Horizontal Transfer of Antibiotic Resistance Genes via Plasmid-Mediated Conjugation. Water Research, 233, Article ID: 119789. >https://doi.org/10.1016/j.watres.2023.119789 Li, W. and Zhang, G. (2022) Detection and Various Environmental Factors of Antibiotic Resistance Gene Horizontal Transfer. Environmental Research, 212, Article ID: 113267. >https://doi.org/10.1016/j.envres.2022.113267 Wang, M., Lian, Y., Wang, Y. and Zhu, L. (2023) The Role and Mechanism of Quorum Sensing on Environmental Antimicrobial Resistance. Environmental Pollution, 322, Article ID: 121238. >https://doi.org/10.1016/j.envpol.2023.121238 Xu, Y., Zhou, Y., Ruan, J., Xu, S., Gu, J., Huang, S., et al. (2015) Endogenous Nitric Oxide in Pseudomonas Fluorescens ZY2 as Mediator against the Combined Exposure to Zinc and Cefradine. Ecotoxicology, 24, 835-843. >https://doi.org/10.1007/s10646-015-1428-6 Su, Y., Wu, D., Xia, H., Zhang, C., Shi, J., Wilkinson, K.J., et al. (2019) Metallic Nanoparticles Induced Antibiotic Resistance Genes Attenuation of Leachate Culturable Microbiota: The Combined Roles of Growth Inhibition, Ion Dissolution and Oxidative Stress. Environment International, 128, 407-416. >https://doi.org/10.1016/j.envint.2019.05.007 Lin, H., Jiang, L., Li, B., Dong, Y., He, Y. and Qiu, Y. (2019) Screening and Evaluation of Heavy Metals Facilitating Antibiotic Resistance Gene Transfer in a Sludge Bacterial Community. Science of The Total Environment, 695, Article ID: 133862. >https://doi.org/10.1016/j.scitotenv.2019.133862 Li, W., Zhang, W., Zhang, M., Lei, Z., Li, P., Ma, Y., et al. (2022) Environmentally Relevant Concentrations of Mercury Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes. Science of the Total Environment, 852, Article ID: 158272. >https://doi.org/10.1016/j.scitotenv.2022.158272 Lu, J., Wang, Y., Jin, M., Yuan, Z., Bond, P. and Guo, J. (2020) Both Silver Ions and Silver Nanoparticles Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes. Water Research, 169, Article ID: 115229. >https://doi.org/10.1016/j.watres.2019.115229 Zhang, Y., Gu, A.Z., Cen, T., Li, X., He, M., Li, D., et al. (2018) Sub-Inhibitory Concentrations of Heavy Metals Facilitate the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes in Water Environment. Environmental Pollution, 237, 74-82. >https://doi.org/10.1016/j.envpol.2018.01.032 Pu, Q., Fan, X., Li, H., An, X., Lassen, S.B. and Su, J. (2021) Cadmium Enhances Conjugative Plasmid Transfer to a Fresh Water Microbial Community. Environmental Pollution, 268, Article ID: 115903. >https://doi.org/10.1016/j.envpol.2020.115903 Zhou, C., Gao, Y., Ma, Q., Xia, Z., Zhu, M., Zhang, X., et al. (2023) The Single and Combined Effects of Sulfamethazine and Cadmium on Soil Nitrification and Ammonia-Oxidizing Microorganisms. Environmental Science and Pollution Research, 30, 56108-56120. >https://doi.org/10.1007/s11356-023-26141-y Wang, L., Xia, X., Zhang, W., Wang, J., Zhu, L., Wang, J., et al. (2019) Separate and Joint Eco-Toxicological Effects of Sulfadimidine and Copper on Soil Microbial Biomasses and Ammoxidation Microorganisms Abundances. Chemosphere, 228, 556-564. >https://doi.org/10.1016/j.chemosphere.2019.04.165 Wang, T., Zhang, J., Tao, M., Xu, C. and Chen, M. (2021) Quantitative Characterization of Toxicity Interaction within Antibiotic-Heavy Metal Mixtures on Chlorella Pyrenoidosa by a Novel Area-Concentration Ratio Method. Science of the Total Environment, 762, Article ID: 144180. >https://doi.org/10.1016/j.scitotenv.2020.144180 Khurana, P., Pulicharla, R. and Kaur Brar, S. (2021) Antibiotic-metal Complexes in Wastewaters: Fate and Treatment Trajectory. Environment International, 157, Article ID: 106863. >https://doi.org/10.1016/j.envint.2021.106863 Chang, P., Li, Z., Jean, J., Jiang, W., Wu, Q., Kuo, C., et al. (2013) Desorption of Tetracycline from Montmorillonite by Aluminum, Calcium, and Sodium: An Indication of Intercalation Stability. International Journal of Environmental Science and Technology, 11, 633-644. >https://doi.org/10.1007/s13762-013-0215-2 Wenlong, B. and Dong, W. (2020) Influence of Fe(III)‐OTC Complex on Degradation of OTC with Fe(II)/H 2O 2 under Simulated Solar Light. Water and Environment Journal, 35, 425-433. >https://doi.org/10.1111/wej.12640 Pulicharla, R., Hegde, K., Brar, S.K. and Surampalli, R.Y. (2017) Tetracyclines Metal Complexation: Significance and Fate of Mutual Existence in the Environment. Environmental Pollution, 221, 1-14. >https://doi.org/10.1016/j.envpol.2016.12.017 郑振华, 周培疆, 吴振斌. 复合污染研究的新进展[J]. 应用生态学报, 2001(3): 469-473. Meadows, S.L., Gennings, C., Carter, W.H. and Bae, D. (2002) Experimental Designs for Mixtures of Chemicals along Fixed Ratio Rays. Environmental Health Perspectives, 110, 979-983. >https://doi.org/10.1289/ehp.02110s6979 Van Regenmortel, T., Nys, C., Janssen, C.R., Lofts, S. and De Schamphelaere, K.A.C. (2017) Comparison of Four Methods for Bioavailability-Based Risk Assessment of Mixtures of Cu, Zn, and Ni in Freshwater. Environmental Toxicology and Chemistry, 36, 2123-2138. >https://doi.org/10.1002/etc.3746 Marking, L. (1977) Method for Assessing Additive Toxicity of Chemical Mixtures. In: Mayer, F.L. and Hamelink, J.L., Eds., Aquatic Toxicology and Hazard Evaluation, ASTM International, 99-108. >https://doi.org/10.1520/stp32392s Christensen, E.R.C.C. (1989) Modeling of Combined Toxic Effects of Chemicals. Hazard Assessment of Chemicals, 6, 125-186. Lin, Z., Yin, K., Shi, P., Wang, L. and Yu, H. (2003) Development of QSARs for Predicting the Joint Effects between Cyanogenic Toxicants and Aldehydes. Chemical Research in Toxicology, 16, 1365-1371. >https://doi.org/10.1021/tx025687a Pan, M. and Chu, L.M. (2017) Fate of Antibiotics in Soil and Their Uptake by Edible Crops. Science of the Total Environment, 599, 500-512. >https://doi.org/10.1016/j.scitotenv.2017.04.214 Deng, H., Tu, Y., Wang, H., Wang, Z., Li, Y., Chai, L., et al. (2022) Environmental Behavior, Human Health Effect, and Pollution Control of Heavy Metal(loid)s toward Full Life Cycle Processes. Eco-Environment & Health, 1, 229-243. >https://doi.org/10.1016/j.eehl.2022.11.003 Lin, H., Wang, Z., Liu, C. and Dong, Y. (2022) Technologies for Removing Heavy Metal from Contaminated Soils on Farmland: A Review. Chemosphere, 305, Article ID: 135457. >https://doi.org/10.1016/j.chemosphere.2022.135457 Banerjee, S. and van der Heijden, M.G.A. (2022) Soil Microbiomes and One Health. Nature Reviews Microbiology, 21, 6-20. >https://doi.org/10.1038/s41579-022-00779-w Chen, P., Guo, X. and Li, F. (2022) Antibiotic Resistance Genes in Bioaerosols: Emerging, Non-Ignorable and Pernicious Pollutants. Journal of Cleaner Production, 348, Article ID: 131094. >https://doi.org/10.1016/j.jclepro.2022.131094 阮存鑫. 四环素与铜复合污染对土壤硝化作用及植物生长的影响[D]: [硕士学位论文]. 南京: 南京林业大学, 2010. 闫雷, 毕世欣, 赵启慧, 等. 土霉素及镉污染对土壤呼吸及酶活性的影响[J]. 水土保持通报, 2014, 34(6): 101-108. Kong, W., Zhu, Y., Fu, B., Marschner, P. and He, J. (2006) The Veterinary Antibiotic Oxytetracycline and Cu Influence Functional Diversity of the Soil Microbial Community. Environmental Pollution, 143, 129-137. >https://doi.org/10.1016/j.envpol.2005.11.003 Huang, R., Wen, B., Pei, Z., Shan, X., Zhang, S. and Williams, P.N. (2009) Accumulation, Subcellular Distribution and Toxicity of Copper in Earthworm (Eisenia fetida) in the Presence of Ciprofloxacin. Environmental Science & Technology, 43, 3688-3693. >https://doi.org/10.1021/es900061t Zhu, Y., Johnson, T.A., Su, J., Qiao, M., Guo, G., Stedtfeld, R.D., et al. (2013) Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proceedings of the National Academy of Sciences of the United States of America, 110, 3435-3440. >https://doi.org/10.1073/pnas.1222743110 赵祥, 王金花, 朱鲁生, 等. 抗生素和铜联合作用对蚕豆根尖细胞微核率的影响[J]. 环境科学研究, 2015, 28(7): 1085-1090. Chen, Q., Cui, H., Su, J., Penuelas, J. and Zhu, Y. (2019) Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 24, 530-541. >https://doi.org/10.1016/j.tplants.2019.02.010 Ezugworie, F.N., Igbokwe, V.C. and Onwosi, C.O. (2021) Proliferation of Antibiotic-Resistant Microorganisms and Associated Genes during Composting: An Overview of the Potential Impacts on Public Health, Management and Future. Science of the Total Environment, 784, Article ID: 147191. >https://doi.org/10.1016/j.scitotenv.2021.147191 Cao, Y., Zhao, J., Wang, Q., Bai, S., Yang, Q., Wei, Y., et al. (2022) Industrial Aerobic Composting and the Addition of Microbial Agents Largely Reduce the Risks of Heavy Metal and ARG Transfer through Livestock Manure. Ecotoxicology and Environmental Safety, 239, Article ID: 113694. >https://doi.org/10.1016/j.ecoenv.2022.113694 Li, H., Tian, Y., Liu, W., Long, Y., Ye, J., Li, B., et al. (2020) Impact of Electrokinetic Remediation of Heavy Metal Contamination on Antibiotic Resistance in Soil. Chemical Engineering Journal, 400, Article ID: 125866. >https://doi.org/10.1016/j.cej.2020.125866 Li, X., Zhu, W., Meng, G., Guo, R. and Wang, Y. (2020) Phytoremediation of Alkaline Soils Co-Contaminated with Cadmium and Tetracycline Antibiotics Using the Ornamental Hyperaccumulators Mirabilis jalapa L. and Tagetes patula L. Environmental Science and Pollution Research, 27, 14175-14183. >https://doi.org/10.1007/s11356-020-07975-2 Duan, M., Li, Z., Yan, R., Zhou, B., Su, L., Li, M., et al. (2023) Mechanism for Combined Application of Biochar and Bacillus Cereus to Reduce Antibiotic Resistance Genes in Copper Contaminated Soil and Lettuce. Science of the Total Environment, 884, Article ID: 163422. >https://doi.org/10.1016/j.scitotenv.2023.163422
Baidu
map