References
Wang, J. and Azam, W. (2024) Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geoscience Frontiers, 15, Article 101757. >https://doi.org/10.1016/j.gsf.2023.101757
Abbasi, K.R., Shahbaz, M., Zhang, J., Irfan, M. and Alvarado, R. (2022) Analyze the Environmental Sustainability Factors of China: The Role of Fossil Fuel Energy and Renewable Energy. Renewable Energy, 187, 390-402. >https://doi.org/10.1016/j.renene.2022.01.066
Schleussner, C., Ganti, G., Rogelj, J. and Gidden, M.J. (2022) An Emission Pathway Classification Reflecting the Paris Agreement Climate Objectives. Communications Earth&Environment, 3, Article No. 135. >https://doi.org/10.1038/s43247-022-00467-w
Krogh, A., Junginger, M., Shen, L., Grue, J. and Pedersen, T.H. (2024) Climate Change Impacts of Bioenergy Technologies: A Comparative Consequential LCA of Sustainable Fuels Production with CCUS. Science of the Total Environment, 940, Article 173660. >https://doi.org/10.1016/j.scitotenv.2024.173660
Kätelhön, A., Meys, R., Deutz, S., Suh, S. and Bardow, A. (2019) Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry. Proceedings of the National Academy of Sciences, 116, 11187-11194. >https://doi.org/10.1073/pnas.1821029116
Desport, L. and Selosse, S. (2022) An Overview of CO
2 Capture and Utilization in Energy Models. Resources, Conservation and Recycling, 180, Article 106150. >https://doi.org/10.1016/j.resconrec.2021.106150
Hou, R., Fong, C., Freeman, B.D., Hill, M.R. and Xie, Z. (2022) Current Status and Advances in Membrane Technology for Carbon Capture. Separation and Purification Technology, 300, Article 121863. >https://doi.org/10.1016/j.seppur.2022.121863
Jiang, L., Liu, W., Wang, R.Q., Gonzalez-Diaz, A., Rojas-Michaga, M.F., Michailos, S., et al. (2023) Sorption Direct Air Capture with CO
2 Utilization. Progress in Energy and Combustion Science, 95, Article 101069. >https://doi.org/10.1016/j.pecs.2022.101069
Dong, Y., Wu, H., Yang, F. and Gray, S. (2022) Cost and Efficiency Perspectives of Ceramic Membranes for Water Treatment. Water Research, 220, Article 118629. >https://doi.org/10.1016/j.watres.2022.118629
Imtiaz, A., Othman, M.H.D., Jilani, A., Khan, I.U., Kamaludin, R. and Samuel, O. (2022) ZIF-Filler Incorporated Mixed Matrix Membranes (MMMs) for Efficient Gas Separation: A Review. Journal of Environmental Chemical Engineering, 10, Article 108541. >https://doi.org/10.1016/j.jece.2022.108541
Dai, Y., Niu, Z., Luo, W., Wang, Y., Mu, P. and Li, J. (2023) A Review on the Recent Advances in Composite Membranes for CO
2 Capture Processes. Separation and Purification Technology, 307, Article 122752. >https://doi.org/10.1016/j.seppur.2022.122752
Ding, R., Wang, Q., Ruan, X., Dai, Y., Li, X., Zheng, W., et al. (2022) Novel and Versatile PEI Modified ZIF-8 Hollow Nanotubes to Construct CO
2 Facilitated Transport Pathway in MMMs. Separation and Purification Technology, 289, Article 120768. >https://doi.org/10.1016/j.seppur.2022.120768
Shah Buddin, M.M.H. and Ahmad, A.L. (2021) A Review on Metal-Organic Frameworks as Filler in Mixed Matrix Membrane: Recent Strategies to Surpass Upper Bound for CO
2 Separation. Journal of CO
2 Utilization, 51, Article 101616. >https://doi.org/10.1016/j.jcou.2021.101616
Ahmad, M.Z., Martin-Gil, V., Supinkova, T., Lambert, P., Castro-Muñoz, R., Hrabanek, P., et al. (2021) Novel MMM Using CO
2 Selective SSZ-16 and High-Performance 6FDA-Polyimide for CO
2/CH
4 Separation. Separation and Purification Technology, 254, Article 117582. >https://doi.org/10.1016/j.seppur.2020.117582
Torres, A., Soto, C., Carmona, F.J., Simorte, M.T., Sanz, I., Muñoz, R., et al. (2024) Enhancing Permeability: Unraveling the Potential of Microporous Organic Polymers in Mixed Matrix Membranes. ACS Applied Polymer Materials, 6, 9088-9098. >https://doi.org/10.1021/acsapm.4c01379
Zheng, W., Ding, R., Dai, Y., Ruan, X., Li, X., Jiang, X., et al. (2023) Regulating the Pore Engineering of MOFs by the Confined Dissolving of PSA Template to Improve CO
2 Capture. Journal of Membrane Science, 670, Article 121373. >https://doi.org/10.1016/j.memsci.2023.121373
Shin, J.E., Lee, S.K., Cho, Y.H. and Park, H.B. (2019) Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax 1657 Mixed Matrix Membranes for CO
2 Separation. Journal of Membrane Science, 572, 300-308. >https://doi.org/10.1016/j.memsci.2018.11.025
Karahan, H.E., Goh, K., Zhang, C., Yang, E., Yıldırım, C., Chuah, C.Y., et al. (2020) MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 32, Article 1906697. >https://doi.org/10.1002/adma.201906697
Pazani, F., Salehi Maleh, M., Shariatifar, M., Jalaly, M., Sadrzadeh, M. and Rezakazemi, M. (2022) Engineered Graphene-Based Mixed Matrix Membranes to Boost CO
2 Separation Performance: Latest Developments and Future Prospects. Renewable and Sustainable Energy Reviews, 160, Article 112294. >https://doi.org/10.1016/j.rser.2022.112294
Liang, Y., Yu, C., Yang, X. and Qiao, Z. (2024) Preparation of Ultrathin and Highly Loaded MOF Mixed Matrix Membranes with Honeycomb-Like Structure via Ordered Array Self-assembly. Chemical Engineering Journal, 485, Article 149749. >https://doi.org/10.1016/j.cej.2024.149749
He, X., Huang, Y., An, M., Fu, J., Wu, D., Qi, S., et al. (2024) Electric-Field-Assisted Arrangement of Carbon Nanotube Inside PDMS Membrane Matrix for Efficient Bio-Ethanol Recovery via Pervaporation. Separation and Purification Technology, 334, Article 125952. >https://doi.org/10.1016/j.seppur.2023.125952
Hassan, N.S., Jalil, A.A., Bahari, M.B., Khusnun, N.F., Aldeen, E.M.S., Mim, R.S., et al. (2023) A Comprehensive Review on Zeolite-Based Mixed Matrix Membranes for CO
2/CH
4 Separation. Chemosphere, 314, Article 137709. >https://doi.org/10.1016/j.chemosphere.2022.137709
Dai, Y., Fang, T., Li, S., Wang, Y., Zhong, S., Su, W., et al. (2024) Mixed-Matrix Membranes Based on Semi-Oxidation MXene Modified G-C
3N
4 Nanosheet for Enhanced CO
2 Separation. Separation and Purification Technology, 348, Article 127776. >https://doi.org/10.1016/j.seppur.2024.127776
Chen, Z., Zhang, P., Wu, H., Sun, S., You, X., Yuan, B., et al. (2022) Incorporating Amino Acids Functionalized Graphene Oxide Nanosheets into Pebax Membranes for CO
2 Separation. Separation and Purification Technology, 288, Article 120682. >https://doi.org/10.1016/j.seppur.2022.120682
Ding, Y., Dai, Y., Wang, H., Yang, X., Yu, M., Zheng, W., et al. (2024) Synergistic Improvement in Gas Separation Performance of MMMs by Porogenic Action and Strong Molecular Forces of ZIF-93. Separation and Purification Technology, 345, Article 127214. >https://doi.org/10.1016/j.seppur.2024.127214
戴欢涛, 游新秀, 徐浩亮, 等. 铁浸渍竹子生物炭吸附CO
2特性研究[J]. 能源化工, 2023, 44(5): 10-15.
张学杨, 徐浩亮, 戴欢涛, 等. 微波辐照木质素浸渍生物炭吸附CO
2性能[J]. 中国环境科学, 2023, 43(8): 4427-4436.
刘淑军, 李冬初, 黄晶, 等. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力[J]. 中国农业科学, 2023, 56(16): 3140-3155.
Cao, L., Zhang, X., Xu, Y., Xiang, W., Wang, R., Ding, F., et al. (2022) Straw and Wood Based Biochar for CO
2 Capture: Adsorption Performance and Governing Mechanisms. Separation and Purification Technology, 287, Article 120592. >https://doi.org/10.1016/j.seppur.2022.120592
Ding, R., Li, Z., Dai, Y., Li, X., Ruan, X., Gao, J., et al. (2022) Boosting the CO
2/N
2 Selectivity of MMMs by Vesicle Shaped ZIF-8 with High Amino Content. Separation and Purification Technology, 298, Article 121594. >https://doi.org/10.1016/j.seppur.2022.121594
Wang, H., Ding, Y., Ning, M., Yu, M., Zheng, W., Ruan, X., et al. (2023) Amino-functional CPL-1 with Abundant CO
2-Philic Groups to Enhance MMM-Based CO
2 Separation. Separation and Purification Technology, 322, Article 124227. >https://doi.org/10.1016/j.seppur.2023.124227
Zhang, X., Gao, B., Fang, J., Zou, W., Dong, L., Cao, C., et al. (2019) Chemically Activated Hydrochar as an Effective Adsorbent for Volatile Organic Compounds (VOCs). Chemosphere, 218, 680-686. >https://doi.org/10.1016/j.chemosphere.2018.11.144
Luo, W., Hou, D., Guan, P., Li, F., Wang, C., Li, H., et al. (2024) Pebax Membranes-Based on Different Two-Dimensional Materials for CO
2 Capture: A Review. Separation and Purification Technology, 340, Article 126744. >https://doi.org/10.1016/j.seppur.2024.126744
Lin, D., Xiao, L., Qin, W., Loy, D.A., Wu, Z., Chen, H., et al. (2022) Preparation, Characterization and Antioxidant Properties of Curcumin Encapsulated Chitosan/Lignosulfonate Micelles. Carbohydrate Polymers, 281, Article 119080. >https://doi.org/10.1016/j.carbpol.2021.119080
谢丽梅, 韩欣妍, 刘亦嘉, 等. 纳米铁复合生物炭与砷在土壤中的共迁移行为[J]. 中国环境科学, 2025: 1-11. >https://doi.org/10.19674/j.cnki.issn1000-6923.20250109.006, 2025-03-08.
Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M. and Ávila, P. (2023) Zeta Potential as a Tool for Functional Materials Development. Catalysis Today, 423, Article 113862. >https://doi.org/10.1016/j.cattod.2022.08.004
曾子弱, 李凯, 李晓康, 等. 竹基生物炭制备方法及其对苯吸附的影响研究[J]. 北京大学学报(自然科学版), 2024: 1-13. >https://doi.org/10.13209/j.0479-8023.2024.112, 2025-03-08.
孙晓, 石林, 张凰, 等. 不同温度玉米秸秆生物炭对eDNA的吸附机制[J]. 环境化学, 2024: 1-10. >http://kns.cnki.net/kcms/detail/11.1844.X.20241212.1012.002.html, 2025-03-08.
宁梦佳, 代岩, 郗元, 等. Cu(Qc)
2强化Pebax混合基质膜分离CO
2 [J]. 化工进展, 2021, 40(10): 5652-5659.
赵烨, 丘晓琳, 王杰, 等. 胺化木质素磺酸钠插层水滑石/Pebax混合基质膜的制备及气体分离性能研究[J]. 化工新型材料, 2024, 52(3): 102-108.
Du, X., Feng, S., Luo, J., Zhuang, Y., Song, W., Li, X., et al. (2023) Pebax Mixed Matrix Membrane with Bimetallic CeZr-MOFs to Enhance CO
2 Separation. Separation and Purification Technology, 322, Article 124251. >https://doi.org/10.1016/j.seppur.2023.124251
Zhao, D., Ren, J., Qiu, Y., Li, H., Hua, K., Li, X., et al. (2015) Effect of Graphene Oxide on the Behavior of Poly(Amide-6-b-ethylene Oxide)/Graphene Oxide Mixed-Matrix Membranes in the Permeation Process. Journal of Applied Polymer Science, 132. >https://doi.org/10.1002/app.42624
Feng, L., Zhang, Q., Su, J., Ma, B., Wan, Y., Zhong, R., et al. (2023) Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO
2/N
2 Separation. Nanomaterials, 14, Article 24. >https://doi.org/10.3390/nano14010024