ojns Open Journal of Natural Science 2330-1724 2330-1732 beplay体育官网网页版等您来挑战! 10.12677/ojns.2025.132034 ojns-109388 Articles 数学与物理, 地球与环境, 信息通讯, 生命科学, 化学与材料 玉米秸秆生物炭掺杂Pebax 1657混合基质膜 分离CO 2性能
CO 2 Separation Performance of Corn Stalk Biochar-Doped Pebax 1657 Mixed Matrix Membranes
邵音子 庄鑫恒 费希同 黄雅玲 张学杨 徐州工程学院环境工程学院,江苏 徐州 03 03 2025 13 02 329 337 21 1 :2025 7 1 :2025 7 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 随着人类社会发展,CO 2的过量排放造成了温室效应的加剧。我国作为农业大国,秸秆产量巨大但资源化利用水平不高。本文以玉米秸秆为原材料制备了生物炭,掺入Pebax 1657中制成混合基质膜(MMMs)用于CO 2分离纯化和玉米秸秆高价值利用。结果表明,与纯Pebax 1657膜相比,生物炭填料的掺入提升了MMMs的性能,且随着掺杂比的提升气体分离性能呈现上升趋势。在掺杂比为4 wt%时性能最佳。玉米秸秆生物炭最佳CO 2渗透系数和选择性分别为125.7 Barrer和81.78,相比纯Pebax 1657膜提升了69%和34%。生物炭掺杂Pebax 1657混合基质膜具有良好的分离CO 2性能。
With the development of human society, the excessive emission of CO 2 has exacerbated the greenhouse effect. As a large agricultural country, straw production of China is huge, but its resource utilization level remains low. In this study, biochar was prepared from corn stalk, and then dopped into Pebax 1657 to produce mixed matrix membranes (MMMs), the obtained MMMs was used for CO 2 separation from gas mixture. The results show that, compared to pure Pebax 1657 membranes, the doping of biochar enhanced the CO 2 separation performance of MMMs. Additionally, the CO 2 separation performance increased with elevating the doping rate, the best performance was achieved at a doping ratio of 4 wt%. The optimal CO 2 permeability and selectivity of MMMs were 125.7 Barrer and 81.78, respectively, which separately improved 69% and 34% compared to pure Pebax 1657 membranes. Biochar-doped Pebax 1657 mixed matrix membranes exhibit excellent CO 2 separation performance.
CO 2分离,生物炭,Pebax 1657,混合基质膜
CO 2 Separation
Biochar Pebax 1657 Mixed Matrix Membrane
1. 引言

随着人类社会的快速发展,化石燃料消耗日益增长,燃烧产生的二氧化硫(SO2)氮氧化物(NOx)等有害气体造成了环境污染 [1] ,大量排放的二氧化碳(CO2)加剧了温室效应 [2] 。为解决日益严重的气候问题,各国于2015年签订了《巴黎协定》,提出了控制气温上升在2℃以内的目标 [3] 。目前二氧化碳捕集利用与封存技术(CCUS)是解决全球变暖的关键技术之一 [4] 。CCUS技术旨在将CO2从工业或者能源设施排放源中分离出来,进行利用或封存以降低CO2向大气中排放 [5] 。CCUS技术的关键是CO2的捕集,目前主流的CO2捕集技术可以分为燃烧前捕集、富氧燃烧和燃烧后捕集 [6] 。目前,燃烧后捕集在工业中应用最为广泛,并主要存在四个技术方向,分别为化学吸收法、物理吸收法、低温法和膜分离技术 [7] 。其中,膜分离技术是通过设计特殊的膜材料,使得CO2在膜两侧形成浓度差,从而实现CO2的分离纯化 [8] 。膜分离技术因其具有能耗低、效率高等特点,被公认为最具潜力的CO2捕集技术之一 [9]

CO2分离膜类型多样,按膜材料主要可分为无机膜、聚合物膜和混合基质膜等 [10] 。无机膜具有较高的透气性和较强的稳定性,但其规模化发展受到制造成本高、成膜性能差等因素的限制 [11] 。聚合物膜是由聚合物材料聚合而成的致密膜,虽然其制备成本低,但其渗透性和选择性受到Trade-off效应的限制 [12] 。而混合基质膜(MMMs)是以填料为分散相,聚合物为连续相的膜材料,可以同时结合填料和聚合物膜的优点,从而突破Trade-off效应的限制 [13] 。MMMs的连续相主要有聚酰亚胺 [14] 、微孔聚合物 [15] 和聚醚聚酰胺嵌段共聚物(Pebax) [16] 等。其中Pebax是由刚性链段PA和柔性链段PEO组成聚合物,通过调控PA和PEO的比例可以得到不同的Pebax。其中具有40 wt% PA段和60 wt%的PEO段的Pebax 1657是目前主流的MMMs连续相之一 [17]

MMMs的填料主要有MXene [18] 、石墨烯 [19] 、金属有机骨架MOFs [20] 、碳纳米管 [21] 、沸石 [22] 等。Dai等人 [23] 研究了一种半氧化MXene修饰g-C3N4纳米片掺入Pebax 1657制备成MMMs用于CO2分离,研究发现MMMs对CO2的渗透系数可达1673.69 Barrer,而CO2/N2选择性为45.13。Chen等人 [24] 研究了一种氨基酸功能化氧化石墨烯纳米片掺入Pebax 1657的MMMs,研究发现掺入0.4 wt% arg@GO纳米片的MMMs具有169 Barrer的CO2透过率和70的CO2/N2选择性。Ding等人 [25] 研究了一种ZIF-93金属有机框架掺入Pebax 1657中分离CO2/N2,研究发现引入10 wt% ZIF-93负载量的MMMs在0.4 MPa时CO2渗透率为84.85 Barrer,CO2/N2选择性为65.76,分别比纯Pebax膜高51.57%和65.50%。生物炭作为一种新型碳材料,由于其具有官能团丰富、孔隙结构发达、芳香结构完备、造价低廉等优点,目前已在环境污染治理中得到了广泛应用 [26] [27] 。我国作为农业大国,玉米作为我国重要的粮食作物,玉米秸秆产量巨大,将玉米秸秆制成生物炭再利用是目前研究的热点话题之一 [28] 。鉴于此,本研究以Pebax 1657为连续相,玉米秸秆生物炭为填料制备了不同质量分数的MMMs用于分离纯化CO2

2. 材料和方法 2.1. 材料与试剂

玉米秸秆,产自徐州市某处农田;Pebax 1657,商品级,由法国Arkema公司提供;无水乙醇,分析纯,由西陇科学股份有限公司提供;溴化钾,≥99.5%,光谱纯,由上海阿拉丁生化科技股份有限公司提供;高纯氩气、高纯氮气、高纯二氧化碳,均由徐州市特种气体厂提供;去离子水,实验室自制。

2.2. 生物炭/PEBAX 1657混合基质膜的制备

玉米秸秆经干燥、破碎后移入管式炉,在600℃下热解3 h得到玉米秸秆生物炭。将上述生物炭使用研钵研磨,过200目筛得到实验用生物炭,记为CB。

MMMs的制备采用溶液浇筑法。取0.4 g Pebax 1657加入乙醇和去离子水质量比为7:3的溶液中,在80℃水浴锅中搅拌2 h得到混合溶液。在混合溶液中加入CB,加入量分别为Pebax 1657质量的2%和4%,继续加热搅拌1 h后将其倒入聚四氟乙烯环形模具中。在室温中冷却定型12 h后移入25℃恒温鼓风烘干箱中12 h,而后移入35 ℃真空烘干箱,继续干燥24 h进一步去除水分。最后从聚四氟乙烯模具中脱模得到MMMs。

2.3. 材料表征及性能测试方法

CB在150℃真空条件下脱气2 h后使用孔径与比表面积分析仪(kuboX1000,北京彼奥德)测试样品N2吸附脱附曲线,并使用Brunauer-Emmett-Teller理论(BET)与Density-Functional-Theory理论(DFT)计算生物炭的比表面积和孔径分布。使用元素分析仪(Elementar Vario Macro cube,德国元素)测定原材料中C、H、N和S元素的含量。使用热重分析仪(TGA/DSC 3+,梅特勒托利多)测定了样品灰分。使用纳米粒度及Zeta电位分析仪(Litesizer 500,安东帕)测量样品在水溶液中的Zeta电位;利用傅里叶变换红外光谱仪(Spotlight 400,铂金埃尔默)以KBr压片法和ATR法分别测试了原材料和MMMs在650~4000 cm1波段的傅里叶红外光谱。使用全自动显微镜共焦拉曼光谱仪(HORIBA Xplora Plus,堀场)测试了原材料的拉曼光谱。使用压差法气体透过率测试仪(SMT-275,济南思克)在25℃恒温条件下以高纯氦气为动力气源测试了MMMs的CO2和N2渗透系数,以理想选择性方程(1)计算CO2/N2选择性(P)

P = P CO 2 P N 2 (1)

式(1)中: P CO 2 为CO2的渗透系数, P N 2 为N2的渗透系数。

3. 结果与讨论 3.1. 生物炭表征

生物炭理化表征如 表1 所示,CB的比表面积(SSA)为5.06 m2/g,总孔体积(PV)为0.052 cm3/g,微孔体积(MPV)为0.002 cm3/g。氮气吸附脱附曲线与生物炭孔径分布( 图1(A) )表明,CB是一种多孔材料,主要以微孔(≤2.0 nm)和介孔(2~50 nm)为主。

<xref></xref>Table 1. Physicochemical properties of biocharTable 1. Physicochemical properties of biochar 表1. 生物炭理化性质

Materials

SSA (m2/g)

PV (cm3/g)

MPV (cm3/g)

N (%)

C (%)

H (%)

S (%)

O (%)

O/C

Ash (%)

CB

5.06

0.052

0.002

2.54

67.88

1.94

0.3

13.35

0.197

13.99

Figure 1. (A) Isothermal adsorption and desorption curve and pore size distribution of biochar; (B) Zeta potential distribution; (C) Fourier infrared spectroscopy; (D) Raman spectrum--图1. (A) 等温吸脱附曲线与生物炭孔径分布;(B) Zeta电位分布;(C) 傅里叶红外光谱;(D) 拉曼光谱--

CB的N元素含量为2.54%,高于不少生物炭的N元素含量,这表明CB内部有较多的含氮基团 [29] 。有文献指出,MMMs中的含氨基基团更有利于CO2溶解,从而提高MMMs的CO2渗透系数 [30] 。Wang等人 [31] 研究了一种氨基功能化CPL-1增强MMMs分离,研究发现在25℃、0.4 MPa条件下,NH2-CPL-1浓度为10 wt%的MMMs具有最佳的CO2分离性能,CO2/N2选择性为85,CO2渗透率为104 Barrer,与CPL-1/Pebax-10 wt.%MMMs相比,分别提高了9.5%和13.3%。CB的O/C比为0.197,高于大多数常见生物炭,这表明CB具有较强亲水性 [29] 。Zhang等人 [32] 研究了化学活化生物炭吸附VOC,发现碳材料的O/C比可以反映其极性和亲水性,O/C比较高的生物炭吸附丙酮的能力更强。对于MMMs,掺杂亲水性高的填料可以改善膜的亲水性,从而增强对CO2的溶解,提高MMMs气体分离能力 [33] 。Zeta电位分布( 图1(B) )表明,CB在水溶液中Zeta电位绝对值大于30 mV,该分散体系稳定 [34] 。有文献指出,生物炭表面含氧官能团越高则Zeta电位绝对值越高 [35] ,而低的Zeta电位绝对值会使颗粒间相互作用减弱,导致颗粒间发生团聚 [36] 。本研究中,CB在溶液中稳定性强,表明CB在MMMs中的分散性好,提升了MMMs的铸膜质量。

CB的傅里叶红外光谱见 图1(C )。CB有-OH (3429 cm1)、-C-H (2923 cm1、2853 cm1)、C=O (1626 cm1)、C-OH (1116 cm1)等官能团。拉曼光谱( 图1(D) )表明,CB具有碳材料典型的D峰(1329 cm1)和G峰(1575 cm-1)。D峰由碳微晶的缺陷产生,在无定形碳中,D带代表生物炭的x晶格缺陷,这是由无序石墨的平面终端中带有悬空键的C原子的振动引起的,而G峰则由碳网平面的对称结构产生,G带对应于石墨的E2g模式,与C sp2键原子的振动有关,代表碳的石墨化程度 [37] 。CB的ID/IG值为0.93,其表面存在较多无定形碳 [38]

3.2. 混合基质膜样品表征

傅里叶红外光谱( 图2 )表明,在纯Pebax 1657中1098 cm1处观察到醚基C-O-C的对称振动,这对应了Pebax 1657中的PEO软段,硬段PA中的H-N-C=O和O-C=O基团分别对应1637 cm1和1728 cm1的两个振动峰 [39] 。脂肪链C-H基团的对称和反对称伸缩振动对应图中在2857 cm1附近的两个振动峰,在3297 cm1对应的是酰胺段N-H伸缩振动峰 [25] 。随着CB的填充量不断升高,MMMs中几乎没有产生新的官能团,这表明填料成功混入MMMs中,且没有与Pebax 1657发生反应,二者仅为物理共混 [40]

Figure 2. Fourier infrared spectrum of MMMs--图2. MMMs的傅里叶红外光谱--
3.3. 混合基质膜性能评价

不同填料浓度对二氧化碳渗透系数的影响( 图3(A) )表明,填料浓度与二氧化碳渗透系数呈线性正相关。CB的掺入提高了MMMs的二氧化碳渗透系数,在4 wt%达到最大(125.7 Barrer),与纯Pebax 1657相比提高了69%。这可能与CB表面的含氮和含氧基团有关,CB掺入后提高了MMMs的含氮和含氧基团的数量,增强了MMMs对CO2的亲和力,从而渗透了更多的CO2

Figure 3. (A) CO2 permeability coefficient of MMMs; (B) Selectivity of MMMs--图3. (A) MMMs的CO2渗透系数;(B) MMMs的选择性--

不同填料浓度对选择性的影响( 图3(B) )表明,填料浓度与选择性呈线性正相关。MMMs在4 wt%达到了最大选择性(81.78),比纯Pebax 1657膜提高了34%。这可能与MMMs的二氧化碳渗透系数随着填料浓度的上升而增大,而氮气的渗透系数受填料浓度影响不大有关。本研究制备的掺杂4 wt% CB的MMMs与其他文献相比,具有明显的竞争优势。例如,Du等人 [41] 研究了一种双金属CeZr-MOF的Pebax混合基质膜分离CO2,该混合基质膜具有100.7 Barrer的CO2渗透性和76.4的选择性。Zhao等人 [42] 研究了一种Pebax/GO MMMs分离CO2,在0.7 MPa,25℃条件下MMMs的二氧化碳渗透系数为108 Barrer,选择性为48.5。Feng等人 [43] 使用石墨烯氧化物改性的金属-有机框架嵌入混合基质膜进行CO2/N2分离,研究发现10 wt%掺量的Pebax 1657-MOF-74(Ni) @GO膜的CO2/N2选择性为76.96。由此可见,本研究制备的MMMs要优于大多数文献报道的MMMs气体分离性能。此外,生物炭低廉的价格使其与其他材料相比,在制备混合基质膜并用于CO2分离方面,具有更高的工程应用潜力。

4. 结论

本研究使用玉米秸秆生物炭掺入Pebax 1657中制备了MMMs,研究了该膜对CO2的分离性能。研究发现,掺杂生物炭可以有效的改善Pebax 1657的CO2分离性能,且分离性能随着添加量的提升而升高。生物炭掺入比例为4 wt%时,MMMs分离CO2的渗透系数达到125.7 Barrer选择性达到81.78,与Pebax 1657膜相比分别提升了的69%和34%。生物炭掺入Pebax 1657制备的MMMs,具有良好的CO2分离性能。

基金项目

江苏省大学生创新创业训练计划项目(xcx2024117)。

NOTES

*通讯作者。

References Wang, J. and Azam, W. (2024) Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geoscience Frontiers, 15, Article 101757. >https://doi.org/10.1016/j.gsf.2023.101757 Abbasi, K.R., Shahbaz, M., Zhang, J., Irfan, M. and Alvarado, R. (2022) Analyze the Environmental Sustainability Factors of China: The Role of Fossil Fuel Energy and Renewable Energy. Renewable Energy, 187, 390-402. >https://doi.org/10.1016/j.renene.2022.01.066 Schleussner, C., Ganti, G., Rogelj, J. and Gidden, M.J. (2022) An Emission Pathway Classification Reflecting the Paris Agreement Climate Objectives. Communications Earth&Environment, 3, Article No. 135. >https://doi.org/10.1038/s43247-022-00467-w Krogh, A., Junginger, M., Shen, L., Grue, J. and Pedersen, T.H. (2024) Climate Change Impacts of Bioenergy Technologies: A Comparative Consequential LCA of Sustainable Fuels Production with CCUS. Science of the Total Environment, 940, Article 173660. >https://doi.org/10.1016/j.scitotenv.2024.173660 Kätelhön, A., Meys, R., Deutz, S., Suh, S. and Bardow, A. (2019) Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry. Proceedings of the National Academy of Sciences, 116, 11187-11194. >https://doi.org/10.1073/pnas.1821029116 Desport, L. and Selosse, S. (2022) An Overview of CO 2 Capture and Utilization in Energy Models. Resources, Conservation and Recycling, 180, Article 106150. >https://doi.org/10.1016/j.resconrec.2021.106150 Hou, R., Fong, C., Freeman, B.D., Hill, M.R. and Xie, Z. (2022) Current Status and Advances in Membrane Technology for Carbon Capture. Separation and Purification Technology, 300, Article 121863. >https://doi.org/10.1016/j.seppur.2022.121863 Jiang, L., Liu, W., Wang, R.Q., Gonzalez-Diaz, A., Rojas-Michaga, M.F., Michailos, S., et al. (2023) Sorption Direct Air Capture with CO 2 Utilization. Progress in Energy and Combustion Science, 95, Article 101069. >https://doi.org/10.1016/j.pecs.2022.101069 Dong, Y., Wu, H., Yang, F. and Gray, S. (2022) Cost and Efficiency Perspectives of Ceramic Membranes for Water Treatment. Water Research, 220, Article 118629. >https://doi.org/10.1016/j.watres.2022.118629 Imtiaz, A., Othman, M.H.D., Jilani, A., Khan, I.U., Kamaludin, R. and Samuel, O. (2022) ZIF-Filler Incorporated Mixed Matrix Membranes (MMMs) for Efficient Gas Separation: A Review. Journal of Environmental Chemical Engineering, 10, Article 108541. >https://doi.org/10.1016/j.jece.2022.108541 Dai, Y., Niu, Z., Luo, W., Wang, Y., Mu, P. and Li, J. (2023) A Review on the Recent Advances in Composite Membranes for CO 2 Capture Processes. Separation and Purification Technology, 307, Article 122752. >https://doi.org/10.1016/j.seppur.2022.122752 Ding, R., Wang, Q., Ruan, X., Dai, Y., Li, X., Zheng, W., et al. (2022) Novel and Versatile PEI Modified ZIF-8 Hollow Nanotubes to Construct CO 2 Facilitated Transport Pathway in MMMs. Separation and Purification Technology, 289, Article 120768. >https://doi.org/10.1016/j.seppur.2022.120768 Shah Buddin, M.M.H. and Ahmad, A.L. (2021) A Review on Metal-Organic Frameworks as Filler in Mixed Matrix Membrane: Recent Strategies to Surpass Upper Bound for CO 2 Separation. Journal of CO 2 Utilization, 51, Article 101616. >https://doi.org/10.1016/j.jcou.2021.101616 Ahmad, M.Z., Martin-Gil, V., Supinkova, T., Lambert, P., Castro-Muñoz, R., Hrabanek, P., et al. (2021) Novel MMM Using CO 2 Selective SSZ-16 and High-Performance 6FDA-Polyimide for CO 2/CH 4 Separation. Separation and Purification Technology, 254, Article 117582. >https://doi.org/10.1016/j.seppur.2020.117582 Torres, A., Soto, C., Carmona, F.J., Simorte, M.T., Sanz, I., Muñoz, R., et al. (2024) Enhancing Permeability: Unraveling the Potential of Microporous Organic Polymers in Mixed Matrix Membranes. ACS Applied Polymer Materials, 6, 9088-9098. >https://doi.org/10.1021/acsapm.4c01379 Zheng, W., Ding, R., Dai, Y., Ruan, X., Li, X., Jiang, X., et al. (2023) Regulating the Pore Engineering of MOFs by the Confined Dissolving of PSA Template to Improve CO 2 Capture. Journal of Membrane Science, 670, Article 121373. >https://doi.org/10.1016/j.memsci.2023.121373 Shin, J.E., Lee, S.K., Cho, Y.H. and Park, H.B. (2019) Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax 1657 Mixed Matrix Membranes for CO 2 Separation. Journal of Membrane Science, 572, 300-308. >https://doi.org/10.1016/j.memsci.2018.11.025 Karahan, H.E., Goh, K., Zhang, C., Yang, E., Yıldırım, C., Chuah, C.Y., et al. (2020) MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 32, Article 1906697. >https://doi.org/10.1002/adma.201906697 Pazani, F., Salehi Maleh, M., Shariatifar, M., Jalaly, M., Sadrzadeh, M. and Rezakazemi, M. (2022) Engineered Graphene-Based Mixed Matrix Membranes to Boost CO 2 Separation Performance: Latest Developments and Future Prospects. Renewable and Sustainable Energy Reviews, 160, Article 112294. >https://doi.org/10.1016/j.rser.2022.112294 Liang, Y., Yu, C., Yang, X. and Qiao, Z. (2024) Preparation of Ultrathin and Highly Loaded MOF Mixed Matrix Membranes with Honeycomb-Like Structure via Ordered Array Self-assembly. Chemical Engineering Journal, 485, Article 149749. >https://doi.org/10.1016/j.cej.2024.149749 He, X., Huang, Y., An, M., Fu, J., Wu, D., Qi, S., et al. (2024) Electric-Field-Assisted Arrangement of Carbon Nanotube Inside PDMS Membrane Matrix for Efficient Bio-Ethanol Recovery via Pervaporation. Separation and Purification Technology, 334, Article 125952. >https://doi.org/10.1016/j.seppur.2023.125952 Hassan, N.S., Jalil, A.A., Bahari, M.B., Khusnun, N.F., Aldeen, E.M.S., Mim, R.S., et al. (2023) A Comprehensive Review on Zeolite-Based Mixed Matrix Membranes for CO 2/CH 4 Separation. Chemosphere, 314, Article 137709. >https://doi.org/10.1016/j.chemosphere.2022.137709 Dai, Y., Fang, T., Li, S., Wang, Y., Zhong, S., Su, W., et al. (2024) Mixed-Matrix Membranes Based on Semi-Oxidation MXene Modified G-C 3N 4 Nanosheet for Enhanced CO 2 Separation. Separation and Purification Technology, 348, Article 127776. >https://doi.org/10.1016/j.seppur.2024.127776 Chen, Z., Zhang, P., Wu, H., Sun, S., You, X., Yuan, B., et al. (2022) Incorporating Amino Acids Functionalized Graphene Oxide Nanosheets into Pebax Membranes for CO 2 Separation. Separation and Purification Technology, 288, Article 120682. >https://doi.org/10.1016/j.seppur.2022.120682 Ding, Y., Dai, Y., Wang, H., Yang, X., Yu, M., Zheng, W., et al. (2024) Synergistic Improvement in Gas Separation Performance of MMMs by Porogenic Action and Strong Molecular Forces of ZIF-93. Separation and Purification Technology, 345, Article 127214. >https://doi.org/10.1016/j.seppur.2024.127214 戴欢涛, 游新秀, 徐浩亮, 等. 铁浸渍竹子生物炭吸附CO 2特性研究[J]. 能源化工, 2023, 44(5): 10-15. 张学杨, 徐浩亮, 戴欢涛, 等. 微波辐照木质素浸渍生物炭吸附CO 2性能[J]. 中国环境科学, 2023, 43(8): 4427-4436. 刘淑军, 李冬初, 黄晶, 等. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力[J]. 中国农业科学, 2023, 56(16): 3140-3155. Cao, L., Zhang, X., Xu, Y., Xiang, W., Wang, R., Ding, F., et al. (2022) Straw and Wood Based Biochar for CO 2 Capture: Adsorption Performance and Governing Mechanisms. Separation and Purification Technology, 287, Article 120592. >https://doi.org/10.1016/j.seppur.2022.120592 Ding, R., Li, Z., Dai, Y., Li, X., Ruan, X., Gao, J., et al. (2022) Boosting the CO 2/N 2 Selectivity of MMMs by Vesicle Shaped ZIF-8 with High Amino Content. Separation and Purification Technology, 298, Article 121594. >https://doi.org/10.1016/j.seppur.2022.121594 Wang, H., Ding, Y., Ning, M., Yu, M., Zheng, W., Ruan, X., et al. (2023) Amino-functional CPL-1 with Abundant CO 2-Philic Groups to Enhance MMM-Based CO 2 Separation. Separation and Purification Technology, 322, Article 124227. >https://doi.org/10.1016/j.seppur.2023.124227 Zhang, X., Gao, B., Fang, J., Zou, W., Dong, L., Cao, C., et al. (2019) Chemically Activated Hydrochar as an Effective Adsorbent for Volatile Organic Compounds (VOCs). Chemosphere, 218, 680-686. >https://doi.org/10.1016/j.chemosphere.2018.11.144 Luo, W., Hou, D., Guan, P., Li, F., Wang, C., Li, H., et al. (2024) Pebax Membranes-Based on Different Two-Dimensional Materials for CO 2 Capture: A Review. Separation and Purification Technology, 340, Article 126744. >https://doi.org/10.1016/j.seppur.2024.126744 Lin, D., Xiao, L., Qin, W., Loy, D.A., Wu, Z., Chen, H., et al. (2022) Preparation, Characterization and Antioxidant Properties of Curcumin Encapsulated Chitosan/Lignosulfonate Micelles. Carbohydrate Polymers, 281, Article 119080. >https://doi.org/10.1016/j.carbpol.2021.119080 谢丽梅, 韩欣妍, 刘亦嘉, 等. 纳米铁复合生物炭与砷在土壤中的共迁移行为[J]. 中国环境科学, 2025: 1-11. >https://doi.org/10.19674/j.cnki.issn1000-6923.20250109.006, 2025-03-08. Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M. and Ávila, P. (2023) Zeta Potential as a Tool for Functional Materials Development. Catalysis Today, 423, Article 113862. >https://doi.org/10.1016/j.cattod.2022.08.004 曾子弱, 李凯, 李晓康, 等. 竹基生物炭制备方法及其对苯吸附的影响研究[J]. 北京大学学报(自然科学版), 2024: 1-13. >https://doi.org/10.13209/j.0479-8023.2024.112, 2025-03-08. 孙晓, 石林, 张凰, 等. 不同温度玉米秸秆生物炭对eDNA的吸附机制[J]. 环境化学, 2024: 1-10. >http://kns.cnki.net/kcms/detail/11.1844.X.20241212.1012.002.html, 2025-03-08. 宁梦佳, 代岩, 郗元, 等. Cu(Qc) 2强化Pebax混合基质膜分离CO 2 [J]. 化工进展, 2021, 40(10): 5652-5659. 赵烨, 丘晓琳, 王杰, 等. 胺化木质素磺酸钠插层水滑石/Pebax混合基质膜的制备及气体分离性能研究[J]. 化工新型材料, 2024, 52(3): 102-108. Du, X., Feng, S., Luo, J., Zhuang, Y., Song, W., Li, X., et al. (2023) Pebax Mixed Matrix Membrane with Bimetallic CeZr-MOFs to Enhance CO 2 Separation. Separation and Purification Technology, 322, Article 124251. >https://doi.org/10.1016/j.seppur.2023.124251 Zhao, D., Ren, J., Qiu, Y., Li, H., Hua, K., Li, X., et al. (2015) Effect of Graphene Oxide on the Behavior of Poly(Amide-6-b-ethylene Oxide)/Graphene Oxide Mixed-Matrix Membranes in the Permeation Process. Journal of Applied Polymer Science, 132. >https://doi.org/10.1002/app.42624 Feng, L., Zhang, Q., Su, J., Ma, B., Wan, Y., Zhong, R., et al. (2023) Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO 2/N 2 Separation. Nanomaterials, 14, Article 24. >https://doi.org/10.3390/nano14010024
Baidu
map