Figure 1. Proportional distribution of different types of methylated C sites: (a) CL11 methylation level; (b) CL21 methylation level; (c) CL31 methylation level; (d) TL11 methylation level; (e) TL21 methylation level; (f) TL31 methylation level. The blue region represents the proportion of methylated cytosine of the CG type, the orange region represents the proportion of methylated cytosine of the CHG type, and the gray area represents the proportion of methylated cytosine of the CHG type--图1. 不同类型甲基化C位点比例分布图:(a) CL11甲基化水平;(b) CL21甲基化水平;(c) CL31甲基化水平;(d) TL11甲基化水平;(e) TL21甲基化水平;(f) TL31甲基化水平。蓝色区域表达CG类型甲基化胞嘧啶所占比例、橘色区域代表CHG类型甲基化胞嘧啶所占比例、灰色区域代表CHG类型甲基化胞嘧啶所占比例--3.4. DMRs (差异甲基化区域)分析
Figure 2. Regional distribution of differential methylation: (a) Differential distribution of methylation at the chromosome level; (b) Genomic distribution of methylation changes; (c) Distribution of CpG-associated DMRs--图2. 差异甲基化区域分布:(a) 染色体水平甲基化差异分布;(b) 甲基化变化的基因组分布;(c) CpG相关的DMRs的分布--
甲基化水平下调。为了研究与这些DMGs关联的功能与通路,我们进行了GO富集和KEGG富集分析。根据GO富集结果(
图3(a)
),DMGs共富集在2142个GO条目,筛选得到了249个显著富集条目(p value < 0.05),其中以树突棘(Dendritic Spine)、mRNA加工(mRNA Processing)、突触后膜(Postsynaptic Membrane)、突出后致密(Postsynaptic Density)和突出后致密膜的组成成分(Integral Component of Postsynaptic Density Membrane)等条目富集结果最为显著,提示这些DMGs可能与神经元结构和功能密切相关。通过KEGG富集分析,我们获得了175个富集通路,其中14个通路显著富集(p value < 0.05)。如
图3(b)
所示:DMGs显著富集在轴突导向(Axon Guidance)、钙信号通路(Calcium Signaling Pathway)、谷氨酸能突触(Glutamatergic Synapse)、MAPK信号通路(MAPK Signaling Pathway)、多巴胺能突触(Dopaminergic Synapse)和Apelin信号通路(Apelin Signaling Pathway)等。这些结果表明,在低氧胁迫条件下,红鳍东方鲀肝脏中的DMGs可能参与一系列与细胞通讯、神经传递和应激反应有关的关键生物学过程。
Figure 3. Functional enrichment analysis of DMGs: (a) GO enrichment map; (b) KEGG enrichment map--图3. DMGs功能富集分析:(a) GO富集图;(b) KEGG富集图--
<xref></xref>3.6. RNA-seq测序数据统计分析
为了深入了解DEGs在低氧胁迫条件下红鳍东方鲀肝脏中所发挥的生物学功能,我们进行了GO富集分析(
图5(a)
)和KEGG富集分析(
图5(b)
)。根据GO富集结果,发现762个DEGs共富集到了2347条目术语上,显著富集了239个条目术语(p value < 0.05),其中炎症反应(Inflammatory Response)、对细菌的防御反应(Defense Response to Bacterium)、内质网腔(Endopeptidase Inhibitor Activity)、脂肪酸代谢(Fatty Acid Metabolic Process)和细胞铁离子稳态(Cellular Iron Ion Homeostasis)等显著富集,这些显著富集的功能类别提示了两组样本在能量代谢、稳态调节和免疫响应等方面存在显著差异,表明低氧环境可能对这些关键生理过程产生了重要影响。根据KEGG富集结果,我们发现762个DEGs共富集到了234个信号通路上,其中有27条信号通路显著富集(p value < 0.05)。其中MAPK信号通路富集的DEGs最多,富集了28个DEGs,其次是TGF-β信号通路(18)、AMPK信号通路(18)和胰岛素信号通路(18)以及HIF-1信号通路富集了15个DEGs。这些通路与细胞增殖、凋亡、代谢调节及应激反应密切相关,进一步证明了低氧胁迫对红鳍东方鲀肝脏组织中多种生物学过程的影响。
Figure 7. Methylation and transcriptome association map: (a) Correlation diagram of normoxia (CL) methylation and transcriptome; (b) Correlation diagram of hypoxic (TL) methylation and transcriptome. The abscissa represents the transcriptome expression and the ordinate represents the methylation level--图7. 甲基化与转录组关联图:(a) 常氧组(CL)甲基化与转录组关联图;(b) 低氧组(TL)甲基化与转录组关联图。横坐标代表转录组表达量,纵坐标代表甲基化水平--
<xref></xref>Table 6. Methylated KEGG is enriched with the transcriptome GSEA (KEGG) in genes in the same pathwayTable 6. Methylated KEGG is enriched with the transcriptome GSEA (KEGG) in genes in the same pathway 表6. 甲基化KEGG与转录组GSEA (KEGG)富集在同一通路中的基因
Figure 8. Robo2 methylation gene structure: (a) Overall structure of robo2 gene and (b) Structure of methylated region of Robo2 gene. The abscissa is the location of the gene sequence, the ordinate is the methylation level, the blue dot represents the normoxia group, and the red dot represents the hypoxic group--图8. Robo2甲基化基因结构:(a) Robo2基因整体结构;(b) Robo2基因甲基化区域结构。横坐标是基因序列位置,纵坐标是甲基化水平,蓝点代表常氧组,红点代表低氧组--
Figure 9. Prkcb methylation gene structure: (a) Overall structure of Prkcb gene and (b) Structure of methylated region of Prkcb gene. The abscissa is the location of the gene sequence, the ordinate is the methylation level, the blue dot represents the normoxia group, and the red dot represents the hypoxic group--图9. Prkcb甲基化基因结构:(a) Prkcb基因整体结构;(b) Prkcb基因甲基化区域结构。横坐标是基因序列位置,纵坐标是甲基化水平,蓝点代表常氧组,红点代表低氧组--Figure 10. Prkcb gene expression--图10. Prkcb基因表达情况--5. 结论
References
崔舒畅, 曾范双, 武琳, 等. 北方海域五种鱼类营养需求的研究进展[J]. 中国饲料, 2023(13): 68-78.
郝薇薇, 高长富, 仇雪梅, 等. 红鳍东方鲀转录因子GATA4基因的表达[J]. 生物技术通报, 2016, 32(6): 155.
Abdel-Tawwab, M., Monier, M.N., Hoseinifar, S.H. and Faggio, C. (2019) Fish Response to Hypoxia Stress: Growth, Physiological, and Immunological Biomarkers. Fish Physiology and Biochemistry, 45, 997-1013.
>https://doi.org/10.1007/s10695-019-00614-9
梁燕珊. 珍珠龙胆石斑鱼对急性低氧胁迫的转录组响应研究[D]: [硕士学位论文]. 湛江: 广东海洋大学, 2023.
余家麒. 青海湖裸鲤低氧胁迫的转录组学分析[D]: [硕士学位论文]. 西宁: 青海大学, 2023.
Li, M., Wang, X., Qi, C., Li, E., Du, Z., Qin, J.G., et al. (2018) Metabolic Response of Nile Tilapia (Oreochromis niloticus) to Acute and Chronic Hypoxia Stress. Aquaculture, 495, 187-195.
>https://doi.org/10.1016/j.aquaculture.2018.05.031
van der Weele, C.M. and Jeffery, W.R. (2022) Cavefish Cope with Environmental Hypoxia by Developing More Erythrocytes and Overexpression of Hypoxia-Inducible Genes. eLife, 11, e69109.
>https://doi.org/10.7554/elife.69109
Ma, Q., Zhang, R., Wei, Y., Liang, M. and Xu, H. (2024) Effects of Intermittent and Chronic Hypoxia on Fish Size and Nutrient Metabolism in Tiger Puffer (Takifugu rubripes). Animals, 14, Article No. 2470.
>https://doi.org/10.3390/ani14172470
宋娜, 黄娜婷, 王舒闻, 等. 肝脏在牦牛对高原环境适应过程中的生物学作用及相关机制研究[J]. 黑龙江畜牧兽医, 2024(20): 117-123+132-134.
张楠, 黄慈, 王会, 王嘉博, 柴志欣, 岳炳霖, 王吉坤. 牦牛不同发育时期卵巢全基因组甲基化谱分析[J]. 南京农业大学学报, 2024: 1-15.
Goldberg, A.D., Allis, C.D. and Bernstein, E. (2007) Epigenetics: A Landscape Takes Shape. Cell, 128, 635-638.
>https://doi.org/10.1016/j.cell.2007.02.006
Gu, Y., Jin, C.X., Tong, Z.H., Jiang, T., Yao, F.C., Zhang, Y., et al. (2024) Expression of Genes Related to Gonadal Development and Construction of Gonadal DNA Methylation Maps of Trachinotus blochii under Hypoxia. Science of the Total Environment, 935, Article ID: 173172.
>https://doi.org/10.1016/j.scitotenv.2024.173172
Li, X., Liu, B., Yang, J., Li, G., Wen, H., Zhang, M., et al. (2022) DNA Methylation in Promoter Region of Immune Related Genes STAT3 and VEGFA and Biochemical Parameters Change in Muscle of Japanese Flounder under Acute Hypoxia. Developmental&Comparative Immunology, 129, Article ID: 104295.
>https://doi.org/10.1016/j.dci.2021.104295
Gonçalo, S., Paulo, S., et al. (2022) Trimming and Validation of Illumina Short Reads Using Trimmomatic, Trinity Assembly, and Assessment of RNA-Seq Data. Methods in Molecular Biology (Clifton, N.J.), 2443, 211-232.
Krueger, F. and Andrews, S.R. (2011) Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications. Bioinformatics, 27, 1571-1572.
>https://doi.org/10.1093/bioinformatics/btr167
Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F.E., Figueroa, M.E., Melnick, A., et al. (2012) Methylkit: A Comprehensive R Package for the Analysis of Genome-Wide DNA Methylation Profiles. Genome Biology, 13, R87.
>https://doi.org/10.1186/gb-2012-13-10-r87
李岩. 长期低氧胁迫下的红鳍东方鲀鳔转录组变化及关键差异基因功能分析[D]: [硕士学位论文]. 大连: 大连海洋大学, 2023.
Kim, S.W. and Kim, K. (2020) Expression of Genes Involved in Axon Guidance: How Much Have We Learned? International Journal of Molecular Sciences, 21, Article No. 3566.
>https://doi.org/10.3390/ijms21103566
Koohini, Z., Koohini, Z. and Teimourian, S. (2019) Slit/Robo Signaling Pathway in Cancer; a New Stand Point for Cancer Treatment. Pathology&Oncology Research, 25, 1285-1293.
>https://doi.org/10.1007/s12253-018-00568-y
Li, X., Ren, Y., Sorokin, V., Poh, K.K., Ho, H.H., Lee, C.N., et al. (2014) Quantitative Profiling of the Rat Heart Myoblast Secretome Reveals Differential Responses to Hypoxia and Re-Oxygenation Stress. Journal of Proteomics, 98, 138-149.
>https://doi.org/10.1016/j.jprot.2013.12.025
Hauptman, G., Reichert, M.C., Abdal Rhida, M.A. and Evans, T.A. (2022) Characterization of Enhancer Fragments in drosophila Robo2. Fly, 16, 312-346.
>https://doi.org/10.1080/19336934.2022.2126259
Motwani, J., Rodger, E.J., Stockwell, P.A., Baguley, B.C., Macaulay, E.C. and Eccles, M.R. (2021) Genome-Wide DNA Methylation and RNA Expression Differences Correlate with Invasiveness in Melanoma Cell Lines. Epigenomics, 13, 577-598.
>https://doi.org/10.2217/epi-2020-0440
Ji, F., Fu, S., Shen, S., Zhang, L., Cao, Q., Li, S., et al. (2015) The Prognostic Value of Combined TGF-β1 and ELF in Hepatocellular Carcinoma. BMC Cancer, 15, Article No. 116.
>https://doi.org/10.1186/s12885-015-1127-y
Deng, Z., Fan, T., Xiao, C., Tian, H., Zheng, Y., Li, C., et al. (2024) TGF-β Signaling in Health, Disease and Therapeutics. Signal Transduction and Targeted Therapy, 9, Article No. 61.
>https://doi.org/10.1038/s41392-024-01764-w
Chen, J., Gingold, J.A. and Su, X. (2019) Immunomodulatory TGF-β Signaling in Hepatocellular Carcinoma. Trends in Molecular Medicine, 25, 1010-1023.
>https://doi.org/10.1016/j.molmed.2019.06.007
Gao, L., Xing, X., Guo, R., Li, Q., Xu, Y., Pan, H., et al. (2024) Effect of Different Dietary Iron Contents on Liver Transcriptome Characteristics in Wujin Pigs. Animals, 14, Article No. 2399.
>https://doi.org/10.3390/ani14162399
Zhang, H., Li, R., Wang, Y., Zhou, J., Xu, H., Gou, M., et al. (2023) Transcriptomic Analysis of Takifugu Obscurus Gills under Acute Hypoxic Stress. Animals, 13, Article No. 1572.
>https://doi.org/10.3390/ani13101572
Chen, C., Song, C., Liu, B., Wang, Y., Jia, J., Pang, K., et al. (2024) Activation of BMP4/SMAD Pathway by HIF-1α in Hypoxic Environment Promotes Osteogenic Differentiation of BMSCS and Leads to Ectopic Bone Formation. Tissue and Cell, 88, Article ID: 102376.
>https://doi.org/10.1016/j.tice.2024.102376
Brochu-Gaudreau, K., Charbonneau, M., Harper, K. and Dubois, C.M. (2022) Hypoxia Selectively Increases a SMAD3 Signaling Axis to Promote Cancer Cell Invasion. Cancers, 14, Article No. 2751.
>https://doi.org/10.3390/cancers14112751
Seifried, H.E., Anderson, D.E., Fisher, E.I. and Milner, J.A. (2007) A Review of the Interaction among Dietary Antioxidants and Reactive Oxygen Species. The Journal of Nutritional Biochemistry, 18, 567-579.
>https://doi.org/10.1016/j.jnutbio.2006.10.007
Roffey, J., Rosse, C., Linch, M., Hibbert, A., McDonald, N.Q. and Parker, P.J. (2009) Protein Kinase C Intervention—The State of Play. Current Opinion in Cell Biology, 21, 268-279.
>https://doi.org/10.1016/j.ceb.2009.01.019
Feng, D., Wang, Z., Zhao, Y., Li, Y., Liu, D., Chen, Z., et al. (2020) circ-PRKCB Acts as a Cerna to Regulate P66shc-Mediated Oxidative Stress in Intestinal Ischemia/Reperfusion. Theranostics, 10, 10680-10696.
>https://doi.org/10.7150/thno.44250
Yang, Y., Fu, Q., Wang, X., Liu, Y., Zeng, Q., Li, Y., et al. (2018) Comparative Transcriptome Analysis of the Swim Bladder Reveals Expression Signatures in Response to Low Oxygen Stress in Channel Catfish, Ictalurus punctatus. Physiological Genomics, 50, 636-647.
>https://doi.org/10.1152/physiolgenomics.00125.2017
Li, L., Fei, X., Wang, H., Chen, S., Xu, X., Ke, H., et al. (2024) Genome-Wide DNA Methylation Profiling Reveals a Novel Hypermethylated Biomarker PRKCB in Gastric Cancer. Scientific Reports, 14, Article No. 26605.
>https://doi.org/10.1038/s41598-024-78135-6