References
Ayerbe, L., Ayis, S., Wolfe, C.D.A. and Rudd, A.G. (2013) Natural History, Predictors and Outcomes of Depression after Stroke: Systematic Review and Meta-Analysis. British Journal of Psychiatry, 202, 14-21.
>https://doi.org/10.1192/bjp.bp.111.107664
Ormstad, H., Aass, H.C.D., Amthor, K., Lund-Sørensen, N. and Sandvik, L. (2012) Serum Levels of Cytokines, Glucose, and Hemoglobin as Possible Predictors of Poststroke Depression, and Association with Poststroke Fatigue. International Journal of Neuroscience, 122, 682-690.
>https://doi.org/10.3109/00207454.2012.709892
Capes, S.E., Hunt, D., Malmberg, K., Pathak, P. and Gerstein, H.C. (2001) Stress Hyperglycemia and Prognosis of Stroke in Nondiabetic and Diabetic Patients: A Systematic Overview. Stroke, 32, 2426-2432.
>https://doi.org/10.1161/hs1001.096194
Xiao, M., Wang, Q., Ren, W., Zhang, Z., Wu, X., Wang, Z., et al. (2018) Impact of Prediabetes on Poststroke Depression in Chinese Patients with Acute Ischemic Stroke. International Journal of Geriatric Psychiatry, 33, 956-963.
>https://doi.org/10.1002/gps.4878
Zhang, Y., He, J., Liang, H., Lu, W., Yang, G., Liu, J., et al. (2017) Diabetes Mellitus Is Associated with Late-Onset Post-Stroke Depression. Journal of Affective Disorders, 221, 222-226.
>https://doi.org/10.1016/j.jad.2017.06.045
van Dooren, F.E.P., Schram, M.T., Schalkwijk, C.G., Stehouwer, C.D.A., Henry, R.M.A., Dagnelie, P.C., et al. (2016) Associations of Low Grade Inflammation and Endothelial Dysfunction with Depression—The Maastricht Study. Brain, Behavior, and Immunity, 56, 390-396.
>https://doi.org/10.1016/j.bbi.2016.03.004
Jang, W.Y., Lee, B., Jeong, J., Sung, Y., Choi, M., Song, P., et al. (2017) Overexpression of Serum Amyloid a 1 Induces Depressive-Like Behavior in Mice. Brain Research, 1654, 55-65.
>https://doi.org/10.1016/j.brainres.2016.09.003
Loubinoux, I., Kronenberg, G., Endres, M., Schumann‐Bard, P., Freret, T., Filipkowski, R.K., et al. (2012) Post‐Stroke Depression: Mechanisms, Translation and Therapy. Journal of Cellular and Molecular Medicine, 16, 1961-1969.
>https://doi.org/10.1111/j.1582-4934.2012.01555.x
Wang, X., Bao, W., Liu, J., OuYang, Y., Wang, D., Rong, S., et al. (2012) Inflammatory Markers and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care, 36, 166-175.
>https://doi.org/10.2337/dc12-0702
Li, W., Ling, S., Yang, Y., Hu, Z., Davies, H. and Fang, M. (2014) Systematic Hypothesis for Post-Stroke Depression Caused Inflammation and Neurotransmission and Resultant on Possible Treatments. Neuro Enocrinology Letters, 35, 104-109.
Collins, S.M., Surette, M. and Bercik, P. (2012) The Interplay between the Intestinal Microbiota and the Brain. Nature Reviews Microbiology, 10, 735-742.
>https://doi.org/10.1038/nrmicro2876
Mayer, E.A., Nance, K. and Chen, S. (2022) The Gut-Brain Axis. Annual Review of Medicine, 73, 439-453.
>https://doi.org/10.1146/annurev-med-042320-014032
Tran, S.M. and Mohajeri, M.H. (2021) The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients, 13, Article No. 732.
>https://doi.org/10.3390/nu13030732
Ling, Y., Gu, Q., Zhang, J., Gong, T., Weng, X., Liu, J., et al. (2020) Structural Change of Gut Microbiota in Patients with Post-Stroke Comorbid Cognitive Impairment and Depression and Its Correlation with Clinical Features. Journal of Alzheimer’s Disease, 77, 1595-1608.
>https://doi.org/10.3233/jad-200315
Kelly, J.R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Research, 82, 109-118.
>https://doi.org/10.1016/j.jpsychires.2016.07.019
Valvassori, S., Resende, W., Budni, J., Dal-Pont, G., Bavaresco, D., Reus, G., et al. (2015) Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early-or Late-Life Stress. Current Neurovascular Research, 12, 312-320.
>https://doi.org/10.2174/1567202612666150728121121
Valvassori, S., Varela, R., Arent, C., Dal-Pont, G., Bobsin, T., Budni, J., et al. (2014) Sodium Butyrate Functions as an Antidepressant and Improves Cognition with Enhanced Neurotrophic Expression in Models of Maternal Deprivation and Chronic Mild Stress. Current Neurovascular Research, 11, 359-366.
>https://doi.org/10.2174/1567202611666140829162158
Müller, B., Rasmusson, A.J., Just, D., Jayarathna, S., Moazzami, A., Novicic, Z.K., et al. (2021) Fecal Short-Chain Fatty Acid Ratios as Related to Gastrointestinal and Depressive Symptoms in Young Adults. Psychosomatic Medicine, 83, 693-699.
>https://doi.org/10.1097/psy.0000000000000965
Luo, F. and Fang, C. (2022) Association between Gut Microbiota and Post-Stroke Depression in Chinese Population: A Meta-Analysis. Heliyon, 8, e12605.
>https://doi.org/10.1016/j.heliyon.2022.e12605
Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., Fagerberg, B., et al. (2013) Gut Metagenome in European Women with Normal, Impaired and Diabetic Glucose Control. Nature, 498, 99-103.
>https://doi.org/10.1038/nature12198
Wu, X., Ma, C., Han, L., Nawaz, M., Gao, F., Zhang, X., et al. (2010) Molecular Characterisation of the Faecal Microbiota in Patients with Type II Diabetes. Current Microbiology, 61, 69-78.
>https://doi.org/10.1007/s00284-010-9582-9
Grant, M.C. and Baker, J.S. (2016) An Overview of the Effect of Probiotics and Exercise on Mood and Associated Health Conditions. Critical Reviews in Food Science and Nutrition, 57, 3887-3893.
>https://doi.org/10.1080/10408398.2016.1189872
Angelucci, F., Brenè, S. and Mathé, A.A. (2005) BDNF in Schizophrenia, Depression and Corresponding Animal Models. Molecular Psychiatry, 10, 345-352.
>https://doi.org/10.1038/sj.mp.4001637
Suwa, M., Kishimoto, H., Nofuji, Y., Nakano, H., Sasaki, H., Radak, Z., et al. (2006) Serum Brain-Derived Neurotrophic Factor Level Is Increased and Associated with Obesity in Newly Diagnosed Female Patients with Type 2 Diabetes Mellitus. Metabolism, 55, 852-857.
>https://doi.org/10.1016/j.metabol.2006.02.012
Guo, W., Nagappan, G. and Lu, B. (2018) Differential Effects of Transient and Sustained Activation of BDNF-TrkB Signaling. Developmental Neurobiology, 78, 647-659.
>https://doi.org/10.1002/dneu.22592
Yang, L., Zhang, Z., Sun, D., Xu, Z., Yuan, Y., Zhang, X., et al. (2010) Low Serum BDNF May Indicate the Development of PSD in Patients with Acute Ischemic Stroke. International Journal of Geriatric Psychiatry, 26, 495-502.
>https://doi.org/10.1002/gps.2552
Fulgenzi, G., Hong, Z., Tomassoni-Ardori, F., Barella, L.F., Becker, J., Barrick, C., et al. (2020) Novel Metabolic Role for BDNF in Pancreatic Β-Cell Insulin Secretion. Nature Communications, 11, Article No. 1950.
>https://doi.org/10.1038/s41467-020-15833-5
Patas, K., Penninx, B.W.J.H., Bus, B.A.A., Vogelzangs, N., Molendijk, M.L., Elzinga, B.M., et al. (2014) Association between Serum Brain-Derived Neurotrophic Factor and Plasma Interleukin-6 in Major Depressive Disorder with Melancholic Features. Brain, Behavior, and Immunity, 36, 71-79.
>https://doi.org/10.1016/j.bbi.2013.10.007
Cryer, M.J., Horani, T. and DiPette, D.J. (2015) Diabetes and Hypertension: A Comparative Review of Current Guidelines. The Journal of Clinical Hypertension, 18, 95-100.
>https://doi.org/10.1111/jch.12638
Chae, W.R., Baumert, J., Nübel, J., Brasanac, J., Gold, S.M., Hapke, U., et al. (2023) Associations between Individual Depressive Symptoms and Immunometabolic Characteristics in Major Depression. European Neuropsychopharmacology, 71, 25-40.
>https://doi.org/10.1016/j.euroneuro.2023.03.007
Fernandes, B.S., Salagre, E., Enduru, N., Grande, I., Vieta, E. and Zhao, Z. (2022) Insulin Resistance in Depression: A Large Meta-Analysis of Metabolic Parameters and Variation. Neuroscience&Biobehavioral Reviews, 139, Article ID: 104758.
>https://doi.org/10.1016/j.neubiorev.2022.104758
He, Y., Tong, L., Guo, F., Zhao, S., Zhang, J., Guo, X., et al. (2022) Depression Status and Insulin Resistance in Adults with Obesity: A Cross-Sectional Study. Journal of Psychosomatic Research, 163, Article ID: 111049.
>https://doi.org/10.1016/j.jpsychores.2022.111049
Martin, H., Bullich, S., Martinat, M., Chataigner, M., Di Miceli, M., Simon, V., et al. (2022) Insulin Modulates Emotional Behavior through a Serotonin-Dependent Mechanism. Molecular Psychiatry, 29, 1610-1619.
>https://doi.org/10.1038/s41380-022-01812-3
Yang, J., Zhang, Z., Xie, Z., Bai, L., Xiong, P., Chen, F., et al. (2022) Metformin Modulates Microbiota-Derived Inosine and Ameliorates Methamphetamine-Induced Anxiety and Depression-Like Withdrawal Symptoms in Mice. Biomedicine&Pharmacotherapy, 149, Article ID: 112837.
>https://doi.org/10.1016/j.biopha.2022.112837
Ji, S., Wang, L. and Li, L. (2019) Effect of Metformin on Short-Term High-Fat Diet-Induced Weight Gain and Anxiety-Like Behavior and the Gut Microbiota. Frontiers in Endocrinology, 10, Article No. 704.
>https://doi.org/10.3389/fendo.2019.00704
Keshavarzi, S., Kermanshahi, S., Karami, L., Motaghinejad, M., Motevalian, M. and Sadr, S. (2019) Protective Role of Metformin against Methamphetamine Induced Anxiety, Depression, Cognition Impairment and Neurodegeneration in Rat: The Role of CREB/BDNF and Akt/GSK3 Signaling Pathways. NeuroToxicology, 72, 74-84.
>https://doi.org/10.1016/j.neuro.2019.02.004
Calkin, C.V., Chengappa, K.N.R., Cairns, K., Cookey, J., Gannon, J., Alda, M., et al. (2022) Treating Insulin Resistance with Metformin as a Strategy to Improve Clinical Outcomes in Treatment-Resistant Bipolar Depression (The TRIO-BD Study): A Randomized, Quadruple-Masked, Placebo-Controlled Clinical Trial. The Journal of Clinical Psychiatry, 83, 21m14022.
>https://doi.org/10.4088/jcp.21m14022
Sheth, K.N., Elm, J.J., Beslow, L.A., Sze, G.K. and Kimberly, W.T. (2015) Glyburide Advantage in Malignant Edema and Stroke (GAMES-RP) Trial: Rationale and Design. Neurocritical Care, 24, 132-139.
>https://doi.org/10.1007/s12028-015-0189-7
Sheth, K.N., Kimberly, W.T., Elm, J.J., Kent, T.A., Mandava, P., Yoo, A.J., et al. (2014) Pilot Study of Intravenous Glyburide in Patients with a Large Ischemic Stroke. Stroke, 45, 281-283.
>https://doi.org/10.1161/strokeaha.113.003352
Simard, J.M., Woo, S.K., Tsymbalyuk, N., Voloshyn, O., Yurovsky, V., Ivanova, S., et al. (2012) Glibenclamide—10-h Treatment Window in a Clinically Relevant Model of Stroke. Translational Stroke Research, 3, 286-295.
>https://doi.org/10.1007/s12975-012-0149-x
Ortega, F.J., Jolkkonen, J., Mahy, N. and Rodríguez, M.J. (2012) Glibenclamide Enhances Neurogenesis and Improves Long-Term Functional Recovery after Transient Focal Cerebral Ischemia. Journal of Cerebral Blood Flow&Metabolism, 33, 356-364.
>https://doi.org/10.1038/jcbfm.2012.166
Su, W., Peng, W., Gong, H., Liu, Y., Zhang, Y., Lian, Y., et al. (2017) Antidiabetic Drug Glyburide Modulates Depressive-Like Behavior Comorbid with Insulin Resistance. Journal of Neuroinflammation, 14, Article No. 210.
>https://doi.org/10.1186/s12974-017-0985-4
Esmaeili, M.H., Bahari, B. and Salari, A. (2018) ATP-Sensitive Potassium-Channel Inhibitor Glibenclamide Attenuates HPA Axis Hyperactivity, Depression-and Anxiety-Related Symptoms in a Rat Model of Alzheimer’s Disease. Brain Research Bulletin, 137, 265-276.
>https://doi.org/10.1016/j.brainresbull.2018.01.001
McClean, P.L. and Hölscher, C. (2014) Liraglutide Can Reverse Memory Impairment, Synaptic Loss and Reduce Plaque Load in Aged APP/PS1 Mice, a Model of Alzheimer’s Disease. Neuropharmacology, 76, 57-67.
>https://doi.org/10.1016/j.neuropharm.2013.08.005
Sato, K., Kameda, M., Yasuhara, T., Agari, T., Baba, T., Wang, F., et al. (2013) Neuroprotective Effects of Liraglutide for Stroke Model of Rats. International Journal of Molecular Sciences, 14, 21513-21524.
>https://doi.org/10.3390/ijms141121513
Weina, H., Yuhu, N., Christian, H., Birong, L., Feiyu, S. and Le, W. (2018) Liraglutide Attenuates the Depressive-and Anxiety-Like Behaviour in the Corticosterone Induced Depression Model via Improving Hippocampal Neural Plasticity. Brain Research, 1694, 55-62.
>https://doi.org/10.1016/j.brainres.2018.04.031
McGovern, S.F.J., Hunter, K. and Hölscher, C. (2012) Effects of the Glucagon-Like Polypeptide-1 Analogue (Val8)GLP-1 on Learning, Progenitor Cell Proliferation and Neurogenesis in the C57B/16 Mouse Brain. Brain Research, 1473, 204-213.
>https://doi.org/10.1016/j.brainres.2012.07.029
Anderberg, R.H., Richard, J.E., Hansson, C., Nissbrandt, H., Bergquist, F. and Skibicka, K.P. (2016) GLP-1 Is both Anxiogenic and Antidepressant; Divergent Effects of Acute and Chronic GLP-1 on Emotionality. Psychoneuroendocrinology, 65, 54-66.
>https://doi.org/10.1016/j.psyneuen.2015.11.021
Ji, C., Xue, G., Lijun, C., Feng, P., Li, D., Li, L., et al. (2016) A Novel Dual GLP-1 and GIP Receptor Agonist Is Neuroprotective in the MPTP Mouse Model of Parkinson’s Disease by Increasing Expression of BNDF. Brain Research, 1634, 1-11.
>https://doi.org/10.1016/j.brainres.2015.09.035
Sharma, A.N., Ligade, S.S., Sharma, J.N., Shukla, P., Elased, K.M. and Lucot, J.B. (2014) GLP-1 Receptor Agonist Liraglutide Reverses Long-Term Atypical Antipsychotic Treatment Associated Behavioral Depression and Metabolic Abnormalities in Rats. Metabolic Brain Disease, 30, 519-527.
>https://doi.org/10.1007/s11011-014-9591-7
Moulton, C.D., Pickup, J.C., Amiel, S.A., Winkley, K. and Ismail, K. (2016) Investigating Incretin-Based Therapies as a Novel Treatment for Depression in Type 2 Diabetes: Findings from the South London Diabetes (SOUL-D) Study. Primary Care Diabetes, 10, 156-159.
>https://doi.org/10.1016/j.pcd.2015.06.003
Li, J., Cao, J., Wei, J. and Geng, W. (2023) Case Report: Semaglutide-Associated Depression: A Report of Two Cases. Frontiers in Psychiatry, 14, Article ID: 1238353.
>https://doi.org/10.3389/fpsyt.2023.1238353
Kornelius, E., Huang, J., Lo, S., Huang, C. and Yang, Y. (2024) The Risk of Depression, Anxiety, and Suicidal Behavior in Patients with Obesity on Glucagon Like Peptide-1 Receptor Agonist Therapy. Scientific Reports, 14, Article No. 24433.
>https://doi.org/10.1038/s41598-024-75965-2
Steyn, S.F., Harvey, B.H. and Brink, C.B. (2018) Immediate and Long-Term Antidepressive-Like Effects of Pre-Pubertal Escitalopram and Omega-3 Supplementation Combination in Young Adult Stress-Sensitive Rats. Behavioural Brain Research, 351, 49-62.
>https://doi.org/10.1016/j.bbr.2018.05.021
Nakata, N., Kato, H. and Kogure, K. (1992) Protective Effects of Serotonin Reuptake Inhibitors, Citalopram and Clomipramine, against Hippocampal CA1 Neuronal Damage Following Transient Ischemia in the Gerbil. Brain Research, 590, 48-52.
>https://doi.org/10.1016/0006-8993(92)91080-x
Gupta, S., Upadhayay, D., Sharma, U., Jagannathan, N.R. and Gupta, Y.K. (2018) Citalopram Attenuated Neurobehavioral, Biochemical, and Metabolic Alterations in Transient Middle Cerebral Artery Occlusion Model of Stroke in Male Wistar Rats. Journal of Neuroscience Research, 96, 1277-1293.
>https://doi.org/10.1002/jnr.24226
Rantamäki, T., Hendolin, P., Kankaanpää, A., Mijatovic, J., Piepponen, P., Domenici, E., et al. (2007) Pharmacologically Diverse Antidepressants Rapidly Activate Brain-Derived Neurotrophic Factor Receptor Trkb and Induce Phospholipase-Cγ Signaling Pathways in Mouse Brain. Neuropsychopharmacology, 32, 2152-2162.
>https://doi.org/10.1038/sj.npp.1301345
Savadi Oskouie, D., Sharifipour, E., Sadeghi Bazargani, H., Hashemilar, M., Nikanfar, M., Ghazanfari Amlashi, S., et al. (2017) Efficacy of Citalopram on Acute Ischemic Stroke Outcome: A Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 31, 638-647.
>https://doi.org/10.1177/1545968317704902
Holmäng, A. and Björntorp, P. (1992) The Effects of Cortisol on Insulin Sensitivity in Muscle. Acta Physiologica Scandinavica, 144, 425-431.
>https://doi.org/10.1111/j.1748-1716.1992.tb09316.x
Buhl, C.S., Stødkilde-Jørgensen, H., Videbech, P., Vaag, A., Møller, N., Lund, S., et al. (2017) Escitalopram Ameliorates Hypercortisolemia and Insulin Resistance in Low Birth Weight Men with Limbic Brain Alterations. The Journal of Clinical Endocrinology&Metabolism, 103, 115-124.
>https://doi.org/10.1210/jc.2017-01438
Gagnon, J., Lussier, M., MacGibbon, B., Daskalopoulou, S.S. and Bartlett, G. (2018) The Impact of Antidepressant Therapy on Glycemic Control in Canadian Primary Care Patients with Diabetes Mellitus. Frontiers in Nutrition, 5, Article No. 47.
>https://doi.org/10.3389/fnut.2018.00047
Lim, C., Kim, S., Park, J., Kim, C., Yoon, S.H. and Lee, J. (2008) Fluoxetine Affords Robust Neuroprotection in the Postischemic Brain via Its Anti‐Inflammatory Effect. Journal of Neuroscience Research, 87, 1037-1045.
>https://doi.org/10.1002/jnr.21899
Lee, H.J., Kim, J.W., Yim, S.V., Kim, M.J., Kim, S.A., Kim, Y.J., et al. (2001) Increase in Cell Proliferation in Dentate Gyrus Following Fluoxetine Treatment in Rat Maternal Separation Model. Molecular Psychiatry, 6, 610.
>https://doi.org/10.1038/sj.mp.4000954
Li, W., Cai, H., Wang, B., Chen, L., Zhou, Q., Luo, C., et al. (2008) Chronic Fluoxetine Treatment Improves Ischemia‐induced Spatial Cognitive Deficits through Increasing Hippocampal Neurogenesis after Stroke. Journal of Neuroscience Research, 87, 112-122.
>https://doi.org/10.1002/jnr.21829
Tian, M., Yang, M., Li, Z., Wang, Y., Chen, W., Yang, L., et al. (2019) Fluoxetine Suppresses Inflammatory Reaction in Microglia under OGD/R Challenge via Modulation of NF-κB Signaling. Bioscience Reports, 39, BSR20181584.
>https://doi.org/10.1042/bsr20181584
Liu, G., Yang, X., Xue, T., Chen, S., Wu, X., Yan, Z., et al. (2021) Is Fluoxetine Good for Subacute Stroke? A Meta-Analysis Evidenced from Randomized Controlled Trials. Frontiers in Neurology, 12, Article ID: 633781.
>https://doi.org/10.3389/fneur.2021.633781
Ghaeli, P., Shahsavand, E., Mesbahi, M., Kamkar, M., Sadeghi, M. and Dashti-Khavidaki, S. (2004) Comparing the Effects of 8-Week Treatment with Fluoxetine and Imipramine on Fasting Blood Glucose of Patients with Major Depressive Disorder. Journal of Clinical Psychopharmacology, 24, 386-388.
>https://doi.org/10.1097/01.jcp.0000132441.27854.0d
Asmaro, K., Elzib, H., Pawloski, J. and Ding, Y. (2019) Antidepressant Pharmacotherapy and Poststroke Motor Rehabilitation: A Review of Neurophysiologic Mechanisms and Clinical Relevance. Brain Circulation, 5, 62-67.
>https://doi.org/10.4103/bc.bc_3_19
Gaur, V. and Kumar, A. (2010) Behavioral, Biochemical and Cellular Correlates in the Protective Effect of Sertraline against Transient Global Ischemia Induced Behavioral Despair: Possible Involvement of Nitric Oxide-Cyclic Guanosine Monophosphate Study Pathway. Brain Research Bulletin, 82, 57-64.
>https://doi.org/10.1016/j.brainresbull.2010.01.010
Kumar, P. and Kumar, A. (2009) Possible Role of Sertraline against 3-Nitropropionic Acid Induced Behavioral, Oxidative Stress and Mitochondrial Dysfunctions in Rat Brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 100-108.
>https://doi.org/10.1016/j.pnpbp.2008.10.013
Stuckart, I., Siepmann, T., Hartmann, C., Pallesen, L., Sedghi, A., Barlinn, J., et al. (2021) Sertraline for Functional Recovery after Acute Ischemic Stroke: A Prospective Observational Study. Frontiers in Neurology, 12, Article ID: 734170.
>https://doi.org/10.3389/fneur.2021.734170
Rachdi, C., Damak, R., Fekih Romdhane, F., Ouertani, H. and Cheour, M. (2019) Impact of Sertraline on Weight, Waist Circumference and Glycemic Control: A Prospective Clinical Trial on Depressive Diabetic Type 2 Patients. Primary Care Diabetes, 13, 57-62.
>https://doi.org/10.1016/j.pcd.2018.09.003
Silverstein-Metzler, M.G., Shively, C.A., Clarkson, T.B., Appt, S.E., Carr, J.J., Kritchevsky, S.B., et al. (2016) Sertraline Inhibits Increases in Body Fat and Carbohydrate Dysregulation in Adult Female Cynomolgus Monkeys. Psychoneuroendocrinology, 68, 29-38.
>https://doi.org/10.1016/j.psyneuen.2016.02.012
Lustman, P.J., Williams, M.M., Sayuk, G.S., Nix, B.D. and Clouse, R.E. (2007) Factors Influencing Glycemic Control in Type 2 Diabetes during Acute-and Maintenance-Phase Treatment of Major Depressive Disorder with Bupropion. Diabetes Care, 30, 459-466.
>https://doi.org/10.2337/dc06-1769