Figure 3. Synthesis routes of AB-COF and ATFG-COF and adsorption-desorption isotherms at 288 K--图3. AB-COF和ATFG-COF的合成路线及其在288 K的水蒸气吸附–脱附等温线--Figure 4. (a) Water sorption analysis on COF-432, measured at different temperatures (10˚C, 25˚C, and 40˚C); (b) Water cycling stability test for 300 adsorption-desorption cycles; (c) The (3,4,4)-c mtf topology of COF-432--图4. (a) COF-432在不同温度下(10˚C、25˚C和40˚C)的水吸附曲线测试;(b) 300次吸附–解吸循环的水循环稳定性试验;(c) COF-432的(3,4,4)-c mtf拓扑结构--
Figure 6. Comparison of water vapor adsorption isotherm for postsynthetic transformation of imine- into nitrone-linked covalent organic frameworks and schematic diagram of linkage conversion--图6. 转换前后的共价有机框架材料的水蒸气吸附等温线的比较以及键连接转换示意图--3.3. 亲疏水性的平衡
Figure 7. (a) Ortho-ketoenamine linked COF; (b) para-enolimine linked COF with their hydrogen bonding interactions between skeleton and water clusters or isolated water molecules--图7. (a) 具有密集亲水位点的邻位–酮烯胺COF促进水团簇的形成;(b) 分散亲水位点的对位–醇亚胺COF难以聚集水分子--
Figure 8. Water adsorption-desorption isotherms of COF-ok and COF-pe at 25˚C (a) and 20 cycles of water adsorption-desorption profile (bule) versus temperature (red) for COF-ok (b)--图8. COF-ok和COF-pe在25˚C时的水吸附–解吸等温线(a)和COF-ok的20次水吸附–解吸曲线(蓝)与温度(红色)的关系(b)--Figure 9. (a) Dynamic performance of water adsorption (298 K) and desorption (333 K) for adsorbents with 30% R.H. airflow, including DHTA-Pa COF, MOF-303, MOF-801, Al-fumarate, Zeolite 13X and SAPO-34; (b) Comparison of apparent water vapor desorption rates with the state-of-the art porous sorbents; (c), (d) Calculated experimental diffusivities of these adsorbents for (c) water adsorption at 298 K and (d) desorption at 333 K; (e) Simulations of water desorption path; (f) Energy barrier for one water molecule to pass across the pores in DHTA-Pa COF and MOF-801--图9. (a) 吸附剂在298 K、30% R.H.条件下的动态水吸附和333 K解吸性能;(b) 与先进多孔吸附剂的表观水分子解吸速率的比较。(c)、(d) 298 K下的水分子吸附和在333 K下解吸的实验扩散系数;(e) 模拟的一个水分子通过DHTA-PaCOF和MOF-801孔道的脱附路径;(f) 对应的水分子脱附能垒--
References
Chen, Z., Song, S., Ma, B., Li, Y., Shao, Y., Shi, J., et al. (2021) Recent Progress on Sorption/Desorption-Based Atmospheric Water Harvesting Powered by Solar Energy. Solar Energy Materials and Solar Cells, 230, Article 111233. >https://doi.org/10.1016/j.solmat.2021.111233
Zhang, S., Fu, J., Das, S., Ye, K., Zhu, W. and Ben, T. (2022) Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption-Based Atmospheric Water Harvesting by Dual Hydrogen Bond System. Angewandte Chemie International Edition, 61, e202208660. >https://doi.org/10.1002/anie.202208660
Geng, K., He, T., Liu, R., Dalapati, S., Tan, K.T., Li, Z., et al. (2020) Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 120, 8814-8933. >https://doi.org/10.1021/acs.chemrev.9b00550
Côté, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J. and Yaghi, O.M. (2005) Porous, Crystalline, Covalent Organic Frameworks. Science, 310, 1166-1170. >https://doi.org/10.1126/science.1120411
Colson, J.W., Woll, A.R., Mukherjee, A., Levendorf, M.P., Spitler, E.L., Shields, V.B., et al. (2011) Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science, 332, 228-231. >https://doi.org/10.1126/science.1202747
Ding, S. and Wang, W. (2013) Covalent Organic Frameworks (COFs): From Design to Applications. Chemical Society Reviews, 42, 548-568. >https://doi.org/10.1039/c2cs35072f
Huang, N., Wang, P. and Jiang, D. (2016) Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nature Reviews Materials, 1, Article 16068. >https://doi.org/10.1038/natrevmats.2016.68
Wang, H., Zeng, Z., Xu, P., Li, L., Zeng, G., Xiao, R., et al. (2019) Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives. Chemical Society Reviews, 48, 488-516. >https://doi.org/10.1039/c8cs00376a
Guan, X., Ma, Y., Li, H., Yusran, Y., Xue, M., Fang, Q., et al. (2018) Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 140, 4494-4498. >https://doi.org/10.1021/jacs.8b01320
Sun, C., Sheng, D., Wang, B. and Feng, X. (2023) Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie International Edition, 62, e202303378. >https://doi.org/10.1002/anie.202303378
Lin, C., Zhang, L., Zhao, Z. and Xia, Z. (2017) Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production. Advanced Materials, 29, Article 1606635. >https://doi.org/10.1002/adma.201606635
Yu, S., Lyu, H., Tian, J., Wang, H., Zhang, D., Liu, Y., et al. (2016) A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants. Polymer Chemistry, 7, 3392-3397. >https://doi.org/10.1039/c6py00281a
Ma, L., Wang, S., Feng, X. and Wang, B. (2016) Recent Advances of Covalent Organic Frameworks in Electronic and Optical Applications. Chinese Chemical Letters, 27, 1383-1394. >https://doi.org/10.1016/j.cclet.2016.06.046
Wan, S., Gándara, F., Asano, A., Furukawa, H., Saeki, A., Dey, S.K., et al. (2011) Covalent Organic Frameworks with High Charge Carrier Mobility. Chemistry of Materials, 23, 4094-4097. >https://doi.org/10.1021/cm201140r
Wang, J., Hua, L., Li, C. and Wang, R. (2022) Atmospheric Water Harvesting: Critical Metrics and Challenges. Energy&Environmental Science, 15, 4867-4871. >https://doi.org/10.1039/d2ee03079a
Kim, H., Rao, S.R., Kapustin, E.A., Zhao, L., Yang, S., Yaghi, O.M., et al. (2018) Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates. Nature Communications, 9, Article No. 1191. >https://doi.org/10.1038/s41467-018-03162-7
Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., et al. (2017) Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight. Science, 356, 430-434. >https://doi.org/10.1126/science.aam8743
张成龙. 激光制备超疏水-超亲水仿生结构表面及集水特性研究[D]: [硕士学位论文]. 温州: 温州大学, 2023.
Ng, E. and Mintova, S. (2008) Nanoporous Materials with Enhanced Hydrophilicity and High Water Sorption Capacity. Microporous and Mesoporous Materials, 114, 1-26. >https://doi.org/10.1016/j.micromeso.2007.12.022
Tashiro, Y., Kubo, M., Katsumi, Y., Meguro, T. and Komeya, K. (2004) Assessment of Adsorption-Desorption Characteristics of Adsorbents for Adsorptive Desiccant Cooling System. Journal of Materials Science, 39, 1315-1319. >https://doi.org/10.1023/b:jmsc.0000013937.11959.6a
Resasco, D.E., Crossley, S.P., Wang, B. and White, J.L. (2021) Interaction of Water with Zeolites: A Review. Catalysis Reviews, 63, 302-362. >https://doi.org/10.1080/01614940.2021.1948301
Metrane, A., Delhali, A., Ouikhalfan, M., Assen, A.H. and Belmabkhout, Y. (2022) Water Vapor Adsorption by Porous Materials: From Chemistry to Practical Applications. Journal of Chemical&Engineering Data, 67, 1617-1653. >https://doi.org/10.1021/acs.jced.2c00145
Henninger, S.K., Jeremias, F., Kummer, H., Schossig, P. and Henning, H. (2012) Novel Sorption Materials for Solar Heating and Cooling. Energy Procedia, 30, 279-288. >https://doi.org/10.1016/j.egypro.2012.11.033
Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M. and Kim, J. (2003) Reticular Synthesis and the Design of New Materials. Nature, 423, 705-714. >https://doi.org/10.1038/nature01650
Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., et al. (2010) Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329, 424-428. >https://doi.org/10.1126/science.1192160
AbdulHalim, R.G., Bhatt, P.M., Belmabkhout, Y., Shkurenko, A., Adil, K., Barbour, L.J., et al. (2017) A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control. Journal of the American Chemical Society, 139, 10715-10722. >https://doi.org/10.1021/jacs.7b04132
Sheikhi, S. and Jalali, F. (2021) Zr-MOF@Polyaniline as an Efficient Platform for Nickel Deposition: Application to Methanol Electro-Oxidation. Fuel, 296, Article 120677. >https://doi.org/10.1016/j.fuel.2021.120677
Chen, Y., Li, P., Modica, J.A., Drout, R.J. and Farha, O.K. (2018) Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. Journal of the American Chemical Society, 140, 5678-5681. >https://doi.org/10.1021/jacs.8b02089
Gao, Z., Wang, C., Li, J., Zhu, Y., Zhang, Z. and Hu, W. (2020) Conductive Metal-Organic Frameworks for Electrocatalysis: Achievements, Challenges, and Opportunities. Acta Physico Chimica Sinica, 37, Article 2010025. >https://doi.org/10.3866/pku.whxb202010025
Gan, L., Wang, L., Xu, L., Fang, X., Pei, C., Wu, Y., et al. (2021) Fe
3C-Porous Carbon Derived from Fe
2O
3 Loaded MOF-74(Zn) for the Removal of High Concentration BPA: The Integrations of Adsorptive/Catalytic Synergies and Radical/Non-Radical Mechanisms. Journal of Hazardous Materials, 413, Article 125305. >https://doi.org/10.1016/j.jhazmat.2021.125305
Liu, X., Wang, X. and Kapteijn, F. (2020) Water and Metal-Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 120, 8303-8377. >https://doi.org/10.1021/acs.chemrev.9b00746
Nguyen, H.L. (2023) Covalent Organic Frameworks for Atmospheric Water Harvesting. Advanced Materials, 35, Article 2300018. >https://doi.org/10.1002/adma.202300018
Biswal, B.P., Kandambeth, S., Chandra, S., Shinde, D.B., Bera, S., Karak, S., et al. (2015) Pore Surface Engineering in Porous, Chemically Stable Covalent Organic Frameworks for Water Adsorption. Journal of Materials Chemistry A, 3, 23664-23669. >https://doi.org/10.1039/c5ta07998e
Stegbauer, L., Hahn, M.W., Jentys, A., Savasci, G., Ochsenfeld, C., Lercher, J.A., et al. (2015) Tunable Water and CO
2 Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering. Chemistry of Materials, 27, 7874-7881. >https://doi.org/10.1021/acs.chemmater.5b02151
Karak, S., Kandambeth, S., Biswal, B.P., Sasmal, H.S., Kumar, S., Pachfule, P., et al. (2017) Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society, 139, 1856-1862. >https://doi.org/10.1021/jacs.6b08815
Nguyen, H.L., Hanikel, N., Lyle, S.J., Zhu, C., Proserpio, D.M. and Yaghi, O.M. (2020) A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. Journal of the American Chemical Society, 142, 2218-2221. >https://doi.org/10.1021/jacs.9b13094
Tan, K.T., Tao, S., Huang, N. and Jiang, D. (2021) Water Cluster in Hydrophobic Crystalline Porous Covalent Organic Frameworks. Nature Communications, 12, Article No. 6747. >https://doi.org/10.1038/s41467-021-27128-4
Nagai, A., Guo, Z., Feng, X., Jin, S., Chen, X., Ding, X., et al. (2011) Pore Surface Engineering in Covalent Organic Frameworks. Nature Communications, 2, Article No. 536. >https://doi.org/10.1038/ncomms1542
Nguyen, H.L., Gropp, C., Hanikel, N., Möckel, A., Lund, A. and Yaghi, O.M. (2022) Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS Central Science, 8, 926-932. >https://doi.org/10.1021/acscentsci.2c00398
Grunenberg, L., Savasci, G., Emmerling, S.T., Heck, F., Bette, S., Cima Bergesch, A., et al. (2023) Postsynthetic Transformation of Imine-Into Nitrone-Linked Covalent Organic Frameworks for Atmospheric Water Harvesting at Decreased Humidity. Journal of the American Chemical Society, 145, 13241-13248. >https://doi.org/10.1021/jacs.3c02572
Chen, L., Han, W., Yan, X., Zhang, J., Jiang, Y. and Gu, Z. (2022) A Highly Stable Ortho-Ketoenamine Covalent Organic Framework with Balanced Hydrophilic and Hydrophobic Sites for Atmospheric Water Harvesting. Chem Sus Chem, 15, e202201824. >https://doi.org/10.1002/cssc.202201824
Sun, C., Zhu, Y., Shao, P., Chen, L., Huang, X., Zhao, S., et al. (2023) 2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature. Angewandte Chemie International Edition, 62, e202217103. >https://doi.org/10.1002/anie.202217103
Chen, Y., Yang, Y., Wang, Y., Xiong, Q., Yang, J., Xiang, S., et al. (2022) Ultramicroporous Hydrogen-Bonded Organic Framework Material with a Thermoregulatory Gating Effect for Record Propylene Separation. Journal of the American Chemical Society, 144, 17033-17040. >https://doi.org/10.1021/jacs.2c06585