aac Advances in Analytical Chemistry 2163-1557 2163-1565 beplay体育官网网页版等您来挑战! 10.12677/aac.2025.151009 aac-108028 Articles 化学与材料 离子型共价有机骨架材料在光催化应用 中的最新进展
Recent Advances in Ionic Covalent Organic Frameworks Material for Photocatalytic Applications
董方园 宋敬璇 邓梓瑜 梁语嫣 董坤范 傅仰河 浙江师范大学含氟新材料研究所,先进催化材料教育部重点实验室,浙江 金华 10 02 2025 15 01 80 89 24 1 :2025 16 1 :2025 16 2 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 共价有机骨架(COFs)是一类由共价键周期性连接的有机组分组成的晶态多孔有机聚合物。COFs材料通常因其本身所具有的大Π电子共轭体系表现出许多突出的特性,如高比表面积和孔隙率、高化学稳定性和热稳定性,对合成单体的不同选择使其结构易调控。这些特殊的优势使COFs材料在光催化方面表现出卓越的性能。此外,通过离子掺杂可以显著提高COFs材料作为光催化剂的活性。文章综述了离子型COF基材料在光催化体系中的最新研究进展。首先,对离子型COFs (iCOFs)的制备方法进行了分析和比较。此外,还介绍了离子型COFs基材料光催化反应的基本原理以及光催化领域的最新研究进展。
Covalent Organic Frameworks (COFs) are crystalline porous organic polymer composed of organic components periodically linked by covalent bonds. COF materials usually exhibit many outstanding properties due to their large Π electron-conjugated system, such as high specific surface area and porosity, high chemical stability, and thermal stability, and the different selections of synthetic monomers make their structures easy to regulate. These special advantages make COFs materials show remarkable performance in photocatalysis. In addition, the activity of COFs as photocatalysts can be significantly improved by ion doping. The recent progress of research on ionic COF-based materials in photocatalytic systems is reviewed in this paper. Firstly, the preparation methods of ionic COFs (iCOFs) were analyzed and compared. In addition, the basic principle of photocatalytic reaction of ionic COFs-based materials and the latest research progress in the field of photocatalysis are also reviewed.
离子型共价有机框架,光催化,合成方法,应用
Ionic Covalent Organic Framework
Photocatalysis Synthetic Method Application
1. 引言

共价有机框架(COFs)是由碳、氮、硼、氧等轻原子通过共价键连接而成的具有高结晶度的多孔材料 [1] 。近十年来,COFs的研究得到了迅速发展,晶体COFs具有周期性、多孔性和共价键性等特点,在这方面具有广阔的应用前景,进一步提高其结构稳健性对实际应用至关重要。COFs结构的合理构建遵循网状化学和动态共价化学的基本原理,主要依赖于刚性构件之间可逆形成的共价键 [2] 。近年来,通过精巧的功能设计,将晶体结构与电离特性结合起来构建离子型共价有机框架 [3] 。COFs材料离子骨架不仅可以提高电子导电性和电荷转移,而且理论上可以改变其正负电荷分布,并在框架中植入大量极性位点,从而实现离子极化 [4] - [6] 。与中性COFs相比,离子型COFs具有更多的极性位点,表现出较高的电子密度和与反离子的亲和力 [7] 。iCOFs材料具有优异的稳定性和规则的内部通道,具有预功能化和后修饰的功能,在分子筛选和分离 [8] 、电催化 [9] [10] 、气体吸附 [11] - [22] 等各个领域都引起了广泛关注。此外,离子COFs可以调节电荷传输行为,骨架和客体分子之间的结合能力,扩大了离子型COFs在光催化领域的潜在应用 [23]

2. 离子型COFs材料的合成方法

COFs的合成主要依赖于化学诱导的动态共价化学(DCC),DCC处理可逆共价反应,允许分子组分的自由交换,以达到平衡时系统的热力学最小值,从而实现有效的热力学平衡,并表现出“错误检查”和“校对”特征 [21] 。因此,DCC有利于形成有序、结晶和热力学稳定的离子COFs结构。如在合成过程中通过缩合反应生成硼胺键或亚胺键,选择合适的合成方法可以在一定程度上调节COFs的形态和特性。

基于DCC,离子型COFs材料的合成方法主要有两种策略:一种是设计官能团并接枝到单体上,然后合成COFs,称为“直接合成”法 [24] ;另一种是在合成的COFs中引入官能团,称为“后修饰”法 [25]

2.1. 直接合成法

溶剂热法是一种成熟的实验室合成技术,已广泛应用于各种iCOF的直接合成中。离子单元可以嵌入带电基团到主干中。具体来说,活性位点(即羟基或氮原子)可以通过溶剂热法将离子片段锚定在孔壁上 [1] [26] [27] 。2015年,Li等人首次采用直接合成方法合成了具有螺硼酸酯键的离子型COFs [28] 。2016年,Zang和Li首次通过溶剂热合成方法报道了一系列带电EB-COFs [29] 。通过离子交换过程,可以将反离子变为F、Cl、Br和I,从而精确控制COFs的通道环境。2016年,Li等人采用1,1-双(4-甲酰基苯基)-4,4'-二氯化联吡啶(BFBP)构建了骨架上离子氮的PC-COF,然后用溴化乙啶和反卤化物离子制备了一系列阳离子二维COFs [30] 。2017年,Jiang等人利用5,6-二(4-甲酰基苄基)-1,3-二甲基-苯并咪唑溴化(BDB)通过席夫缩合,报道了在孔壁两侧具有电偶极子的阳离子COFs (PyTTA-BFB-Imi-COF) [17] 。2023年,Han等人报道了以1,10-菲罗啉-5,6-二酮为单元,直接合成溴离子阳离子COF (PD2+-COF)。除了离子主链外,沿链还引入了离子位 [31] 。2023年,Jiang等人使用3,3'-(2,5-二甲酰-1,4苯基)双(氧)双(丙烷-1-磺酸)单元构建了具有快速和选择性离子传输的阴离子三维COF [11] 。Li等人通过咪唑单体(1,3,5-三[3(4-甲酰基苄基)-1h-咪唑-1-基]溴苯)和联苯胺之间的席夫反应生成了阳离子COFs [32] 。溶剂热法合成ZVCOF-1 ZVCOF-2示意图如 图1 所示。

Figure 1. Schematic diagram of synthesis of ZVCOF-1 ZVCOF-2 by solvothermal method--图1. 溶剂热法合成ZVCOF-1 ZVCOF-2示意图--

虽然大多数产生iCOFs的反应都需要高温,但也有少数反应可以在室温下进行。由于温和条件下的反应比溶剂热反应更简单、更容易操作,已成为当前的发展趋势。机械化学合成是一种简单的方法,将离子和中性单体放在砂浆中,在室温下用很少或没有溶剂研磨后合成COFs。机械化学法是一种简单、经济、环保的合成方法。如 图2 所示,Zhao的团队通过机械辅助将具有C3对称性的Tp与两种磺酸基线性单体在三甲苯/二氧六环/乙酸混合溶剂下研磨合成了两个磺化共价有机框架(COFs),它们具有一维的纳米孔通道,上面装饰着独立的磺酸基,具有高结晶性。这些COFs在环境温度和97%相对湿度(RH)下具有较高的质子固有电导率,高达3.96 × 10−2 S∙cm−1,具有长期稳定性 [33]

Figure 2. Schematic diagram of NUS-COFs synthesis by mechanical method--图2. 机械化学法合成NUS-COFs示意图--

微波合成方法具有显著的优点(如节省能量和时间)。金属基COFs是一类特殊的iCOFs,可以在碱性条件下通过类金属源与多羟基耦合,并通过微波合成的方法直接合成。目前,通过微波合成方法已经报道了多种金属基COFs。如 图3 所示,Feng团队报道了一种使用微波辅助方法的三维螺旋体连接阴离子COF,Feng团队选择了一种柔性的脂肪族大环g-环糊精(g-CD)在多种碱存在下与类金属中心连接,从而使CD-COF具有多种反阴离子b [34]

Figure 3. Schematic diagram of CD-COFs synthesis by microwave synthesis--图3. 微波合成法合成CD-COFs示意图--
2.2. 后修饰法

由于空间位阻效应和离子构建单元的静电斥力,传统自下而上的合成方法难以直接合成具有离子化框架的COFs,一些期望的iCOFs不能通过直接合成方法得到 [3] [35] [36] 。为了解决这个问题,合成后修饰已经成为直接合成方法的完美补充,大大拓宽了iCOFs的种类。侧链后修饰是通过引入适当的基团将活性位点从框架延伸到COFs孔内的常用方法。侧链修饰后,必须有基团起到桥接作用,连接COFs和离子基团 [19] [37]

2017年,Yan及其同事通过异相序列合成后修饰的方法借助COF内外孔壁上存在的可接近的羟基,安装荧光标记的锚定位点,通过形成邻硫代氨基甲酸酯键合成了用于阴离子传导的季铵盐功能化COFs [38] 。这种季铵功能化COF为阴离子交换膜燃料电池的发展提供了一种新的选择 [39] 。2019年,Guo及其同事提出了一种新的策略,将基于2,2'-联吡啶的COFs通过后修饰法,使COFs与1,2-二溴乙烷通过离子键结合从中性转化为带正电并最终转化为阳离子自由基框架,从而使框架中的氧化还原中心相互重叠。通过π耦合多层发生的电荷间转移,使其具有优异的光物理性能,即通过非辐射弛豫过程进行近红外吸收和光热转换 [22] 。2022年,Loh等人开发了离子COFs (IP COFs),它是由亚胺连接的COFs转化而来,其中的C = N键是用甲醛前体重建的,形成杂环咪唑吡啶,与直接使用离子构建块不同,这种后修饰的方法使得离子连接键能够在更多的COFs (IP-COF-1、IP-COF-2) [14] 中得以实现。最近,Zeng的团队利用Menshutkin反应和环加成反应构建了离子COFs,通过对模板型共价有机框架的连接和键的调节,证明了共价有机框架在CO2还原反应中的催化性能与共价有机框架结构之间的相关性。通过双重修饰,CO2的结合能力和电子态得到了很好的调整,使得CO2还原反应的活性和选择性可控。值得注意的是,双官能团共价有机骨架具有较高的选择性,CO法拉第效率最高可达97.32%,周转率值为9922.68 h−1,高于碱基共价有机骨架和单修饰共价有机骨架 [40]

Figure 4. TAPT-BP-COF post modification method to synthesize TAPT-BP2+-COF route--图4. TAPT-BP-COF后修饰法合成TAPT-BP2+-COF路线--

图4 所示,Tang等人通过超临界CO2 (scCO2)活化,在1 h内快速合成了具有高结晶度骨架的联吡啶基TAPT-BP-COF。然后,通过季铵化反应生成指示型TAPT-BP2 +-COF。由于其亲二氧化碳基团(亚胺和三嗪基)、极性基团(-OH)、带电荷骨架和合适的孔径,使得TAPT-BP2+-COF的CO2捕获能力提高了55.6%,从而保证了催化活性位点周围有足够的CO2。此外,由于在TAPT-BP2+-COF骨架中存在-OH和Br之间的协同作用,观察到突出的结构增强了CO2转化性能。与单独的TAPT-BP-COF和[OH-BP]2+[Br]2− (BP2+部分)相比,在没有任何溶剂和助催化剂的情况下,环加成的决定速率步骤明显加快 [41] 。越来越多的研究证明,一些具有可能结构的COFs可以通过后修饰法来实现离子化,而iCOFs在离子传导、能量储存、分离和催化方面表现出优异的性能。

3. 离子型COFs材料在光催化中的应用

独特的π共轭结构有利于载流子在骨架中的传输,从而产生更好的光吸收和导电性。高化学稳定性和热稳定性使其在光催化反应中保持稳定,不受光腐蚀的影响 [29] [42] - [46] 。在iCOFs中,内部通道环境、孔隙形状、层堆叠模式、骨架尺度和反离子是可调节的。这些具有极性骨架或极性链的离子COFs具有以下特点,适合克服这些限制:1) 精细调制带隙,可以调节空穴电子分离;2) 高极化度提高了电子和电荷的转移;3) 离子基团能增强对反应物的吸附和可及性 [47] - [49] ,这些优点使iCOFs在光催化领域中表现出优异的活性。本文将总结和讨论基于iCOFs材料用于光催化反应的各种COF材料光催化剂。

3.1. 光催化析氢

光催化析氢水裂解和水净化技术是利用太阳能来解决能源危机的重要技术 [50] [51] 。因此,开发高性能光催化剂是提高生产效率和实现应用的重要课题 [1] 。近些年来,不断有研究成果证明,一些iCOFs由于在原结构上离子基团的引入,增强了COFs的光催化性能。 表1 是近些年来应用于光催化析氢的离子型COFs的总结。

<xref></xref>Table 1. Summary of photocatalytic hydrogen precipitation performance of iCOFs.Table 1. Summary of photocatalytic hydrogen precipitation performance of iCOFs. 表1. iCOFs的光催化析氢性能总结

序号

催化剂

mcat (mg)

HER (µmol∙h−1)

参考文献

1

Tp-2C/BPy2+-COF

10

346

[52]

2

Tp-3C/BPy2+-COF

10

274

[52]

3

Tp-4C/BPy2+-COF

10

223

[52]

4

ZVCOF-1

20

2052

[35]

5

ZVCOF-2

20

1306

[35]

6

Zi-VCOF-1

2

27.09

[6]

7

Zi-VCOF-2

2

10.11

[6]

8

Mo3S13@EB-COF

2

26.43

[53]

注:以上反应体系所用光源均为氙灯(λ > 400 nm)。

2018年,Zang等人通过静电吸引和光催化HER的开放通道,在EB-COF中封装了阴离子簇(Mo3S13) 2多孔框架提供了催化位点的可达性,而阳离子位点和阴离子簇之间的相互作用确保了通道内的完全封装,从而增强了质量的传递。因此,该iCOF光催化剂在18小时内的HER率为13,215 mmol/h,保持了稳定性和可回收性。除了在孔隙中包裹簇外,发展离子骨架还可以结合反应物,进一步提高催化活性 [53]

图5 所示,Guo的团队以2,2'-联吡啶为支构,构建典型β-酮胺连接的COF,然后COF与1,2-二溴烷烃季铵化成环双元,即BPy2+。所得到的COF构成了一个集成平台,包含2,2'-联吡啶作为光敏剂和环双醌作为光催化水分解的ETM,阳离子的静电斥力抑制了来自层堆叠模型的自由基结合,提供了优越的电子转移能力和提高的电导率。基于这些特征,含有19.1 mol% 2C/BPy2+的Tp-2C/BPy2+-COF在48小时内的HER速率为34,600 mmol∙g1∙h1 [52]

Figure 5. Schematic diagram of the synthesis route of the target iCOF and its photocatalytic hydrogen precipitation reaction--图5. 目标iCOF的合成路线及其光催化析氢反应示意图-- Figure 6. Schematic representation of PD2+-COFx photo-driven quasi-topological conversion to nitrogen cationic motifs (PD2+ cations)--图6. PD2+-COFx光驱动准拓扑转换成氮阳离子基序(PD2+阳离子)的示意图--

2023年,Dong的团队通过直接合成的方法设计了一种具有高效光催化析氢活性的iCOFs——Zi-VCOF-1和Zi-VCOF-2。由于具有良好的光学性质和优异的亲水性,这两种iCOFs均表现出较高的光催化析氢速率 [6] 。2024年,Zhang的团队对Zi-VCOF的合成方法进行改进,采用绿色水热合成法,以预先设计好的两性离子构筑块为原料,制备了高结晶性的两性离子乙烯链COFs ZVCOFs,ZVCOFs的结晶性大大提高,且具有更高的比表面积 [35]

3.2. 光催化H<sub>2</sub>O<sub>2</sub>还原

除HER外,离子COFs在过氧化氢的光合作用中也表现出优异的催化性能。如 图6 所示,Han等人构建了阳离子型COF (PD2+-COF),高共轭结构和阳离子氮位提高了电荷转移效率,促进了质子化电子空穴的分离,增强了对氧的吸附。骨架上的离子位作为电子阱聚集电子,PD2+-COF的苯环聚集空穴,将水氧化为氧。此外,阳离子氮作为主要活性位点不仅捕获O2,还利用*OOH中间体生成H2O2 [31]

4. 总结

综上所述,部分iCOFs在光催化领域因其优异的性能而逐渐受到关注。本文综述了合成离子型共价有机框架的不同方法,通过可定制设计的结构增加了电荷迁移的方向性,改善电子和电荷转移,减少了光生电子空穴的复合,近年来被越来越多地应用于光催化领域中。本文讨论了iCOFs在光催化析氢和光催化还原H2O2中的应用,但对于iCOFs在其他领域光催化反应的应用少有报道,说明iCOFs在光催化领域中有巨大潜力。

NOTES

*通讯作者。

References Wei, P., Qi, M., Wang, Z., Ding, S., Yu, W., Liu, Q., et al. (2018) Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 140, 4623-4631. >https://doi.org/10.1021/jacs.8b00571 López-Magano, A., Jiménez-Almarza, A., Alemán, J. and Mas-Ballesté, R. (2020) Metal-Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts, 10, Article 720. >https://doi.org/10.3390/catal10070720 Zhang, P., Wang, Z., Cheng, P., Chen, Y. and Zhang, Z. (2021) Design and Application of Ionic Covalent Organic Frameworks. Coordination Chemistry Reviews, 438, Article ID: 213873. >https://doi.org/10.1016/j.ccr.2021.213873 Li, J., Jin, H., Qin, T., Liu, F., Wu, S. and Feng, L. (2024) Symmetrical Localized Built-In Electric Field by Induced Polarization Effect in Ionic Covalent Organic Frameworks for Selective Imaging and Killing Bacteria. ACS Nano, 18, 4539-4550. >https://doi.org/10.1021/acsnano.3c11628 Chen, S., Wu, Y., Zhang, Y., Zhang, W., Fu, Y., Huang, W., et al. (2020) Tuning Proton Dissociation Energy in Proton Carrier Doped 2D Covalent Organic Frameworks for Anhydrous Proton Conduction at Elevated Temperature. Journal of Materials Chemistry A, 8, 13702-13709. >https://doi.org/10.1039/d0ta04488a Ji, H., Qiao, D., Yan, G., Dong, B., Feng, Y., Qu, X., et al. (2023) Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials&Interfaces, 15, 37845-37854. >https://doi.org/10.1021/acsami.3c08250 Fu, Y., Li, Y., Zhang, W., Luo, C., Jiang, L. and Ma, H. (2022) Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to US? Chemical Research in Chinese Universities, 38, 296-309. >https://doi.org/10.1007/s40242-022-1448-8 Zhang, Y., Guo, J., Han, G., Bai, Y., Ge, Q., Ma, J., et al. (2021) Molecularly Soldered Covalent Organic Frameworks for Ultrafast Precision Sieving. Science Advances, 7, eabe8706. >https://doi.org/10.1126/sciadv.abe8706 Wu, Q., Si, D., Wu, Q., Dong, Y., Cao, R. and Huang, Y. (2022) Boosting Electroreduction of Co 2over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions. Angewandte Chemie International Edition, 62, e202215687. >https://doi.org/10.1002/anie.202215687 Dong, W., Qin, Z., Wang, K., Xiao, Y., Liu, X., Ren, S., et al. (2022) Isomeric Oligo(Phenylenevinylene)‐Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. Angewandte Chemie International Edition, 62, e202216073. >https://doi.org/10.1002/anie.202216073 Zhu, T., Kong, Y., Lyu, B., Cao, L., Shi, B., Wang, X., et al. (2023) 3D Covalent Organic Framework Membrane with Fast and Selective Ion Transport. Nature Communications, 14, Article No.5926. >https://doi.org/10.1038/s41467-023-41555-5 Yang, X., An, Q., Li, X., Fu, Y., Yang, S., Liu, M., et al. (2024) Charging Modulation of the Pyridine Nitrogen of Covalent Organic Frameworks for Promoting Oxygen Reduction Reaction. Nature Communications, 15, Article No. 1889. >https://doi.org/10.1038/s41467-024-46291-y He, C., Si, D., Huang, Y. and Cao, R. (2022) A CO 2‐Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie International Edition, 61, e202207478. >https://doi.org/10.1002/anie.202207478 Li, X., Zhang, K., Wang, G., Yuan, Y., Zhan, G., Ghosh, T., et al. (2022) Constructing Ambivalent Imidazopyridinium-Linked Covalent Organic Frameworks. Nature Synthesis, 1, 382-392. >https://doi.org/10.1038/s44160-022-00071-y Kang, F., Wang, X., Chen, C., Lee, C., Han, Y. and Zhang, Q. (2023) Construction of Crystalline Nitrone-Linked Covalent Organic Frameworks via Kröhnke Oxidation. Journal of the American Chemical Society, 145, 15465-15472. >https://doi.org/10.1021/jacs.3c03938 Tao, S., Xu, H., Xu, Q., Hijikata, Y., Jiang, Q., Irle, S., et al. (2021) Hydroxide Anion Transport in Covalent Organic Frameworks. Journal of the American Chemical Society, 143, 8970-8975. >https://doi.org/10.1021/jacs.1c03268 Huang, N., Wang, P., Addicoat, M.A., Heine, T. and Jiang, D. (2017) Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie International Edition, 56, 4982-4986. >https://doi.org/10.1002/anie.201611542 He, L., Chen, L., Dong, X., Zhang, S., Zhang, M., Dai, X., et al. (2021) A Nitrogen-Rich Covalent Organic Framework for Simultaneous Dynamic Capture of Iodine and Methyl Iodide. Chem, 7, 699-714. >https://doi.org/10.1016/j.chempr.2020.11.024 Segura, J.L., Royuela, S. and Mar Ramos, M. (2019) Post-Synthetic Modification of Covalent Organic Frameworks. Chemical Society Reviews, 48, 3903-3945. >https://doi.org/10.1039/c8cs00978c Skorjanc, T., Shetty, D., Gándara, F., Ali, L., Raya, J., Das, G., et al. (2020) Remarkably Efficient Removal of Toxic Bromate from Drinking Water with a Porphyrin-Viologen Covalent Organic Framework. Chemical Science, 11, 845-850. >https://doi.org/10.1039/c9sc04663a Xie, Z., Wang, B., Yang, Z., Yang, X., Yu, X., Xing, G., et al. (2019) Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie International Edition, 58, 15742-15746. >https://doi.org/10.1002/anie.201909554 Mi, Z., Yang, P., Wang, R., Unruangsri, J., Yang, W., Wang, C., et al. (2019) Stable Radical Cation-Containing Covalent Organic Frameworks Exhibiting Remarkable Structure-Enhanced Photothermal Conversion. Journal of the American Chemical Society, 141, 14433-14442. >https://doi.org/10.1021/jacs.9b07695 Liu, M., Xu, Q. and Zeng, G. (2024) Ionic Covalent Organic Frameworks in Adsorption and Catalysis. Angewandte Chemie International Edition, 63, e202404886. >https://doi.org/10.1002/anie.202404886 Qian, H., Yang, C. and Yan, X. (2016) Bottom-Up Synthesis of Chiral Covalent Organic Frameworks and Their Bound Capillaries for Chiral Separation. Nature Communications, 7, Article No. 12104. >https://doi.org/10.1038/ncomms12104 Yu, F., Ciou, J., Chen, S., Poh, W.C., Chen, J., Chen, J., et al. (2022) Ionic Covalent Organic Framework Based Electrolyte for Fast-Response Ultra-Low Voltage Electrochemical Actuators. Nature Communications, 13, Article No. 390. >https://doi.org/10.1038/s41467-022-28023-2 Bisbey, R.P. and Dichtel, W.R. (2017) Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. ACS Central Science, 3, 533-543. >https://doi.org/10.1021/acscentsci.7b00127 Koo, B.T., Heden, R.F. and Clancy, P. (2017) Nucleation and Growth of 2D Covalent Organic Frameworks: Polymerization and Crystallization of COF Monomers. Physical Chemistry Chemical Physics, 19, 9745-9754. >https://doi.org/10.1039/c6cp08449d Du, Y., Yang, H., Whiteley, J.M., Wan, S., Jin, Y., Lee, S., et al. (2015) Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie International Edition, 55, 1737-1741. >https://doi.org/10.1002/anie.201509014 Ma, H., Liu, B., Li, B., Zhang, L., Li, Y., Tan, H., et al. (2016) Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. Journal of the American Chemical Society, 138, 5897-5903. >https://doi.org/10.1021/jacs.5b13490 Yu, S., Lyu, H., Tian, J., Wang, H., Zhang, D., Liu, Y., et al. (2016) A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants. Polymer Chemistry, 7, 3392-3397. >https://doi.org/10.1039/c6py00281a Hao, F., Yang, C., Lv, X., Chen, F., Wang, S., Zheng, G., et al. (2023) Photo‐Driven Quasi‐Topological Transformation Exposing Highly Active Nitrogen Cation Sites for Enhanced Photocatalytic H 2O 2 Production. Angewandte Chemie International Edition, 62, e202315456. >https://doi.org/10.1002/anie.202315456 Li, Z., Liu, Z., Mu, Z., Cao, C., Li, Z., Wang, T., et al. (2020) Cationic Covalent Organic Framework Based All-Solid-State Electrolytes. Materials Chemistry Frontiers, 4, 1164-1173. >https://doi.org/10.1039/c9qm00781d Peng, Y., Xu, G., Hu, Z., Cheng, Y., Chi, C., Yuan, D., et al. (2016) Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity. ACS Applied Materials&Interfaces, 8, 18505-18512. >https://doi.org/10.1021/acsami.6b06189 Zhang, Y., Duan, J., Ma, D., Li, P., Li, S., Li, H., et al. (2017) Three‐Dimensional Anionic Cyclodextrin‐Based Covalent Organic Frameworks. Angewandte Chemie International Edition, 56, 16313-16317. >https://doi.org/10.1002/anie.201710633 Zhang, Z. and Xu, Y. (2023) Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. Journal of the American Chemical Society, 145, 25222-25232. >https://doi.org/10.1021/jacs.3c08220 Xie, Y., Pan, T., Lei, Q., Chen, C., Dong, X., Yuan, Y., et al. (2021) Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine‐Capture Capacity. Angewandte Chemie International Edition, 60, 22432-22440. >https://doi.org/10.1002/anie.202108522 Ding, H., Mal, A. and Wang, C. (2020) Tailored Covalent Organic Frameworks by Post-Synthetic Modification. Materials Chemistry Frontiers, 4, 113-127. >https://doi.org/10.1039/c9qm00555b Rager, S., Dogru, M., Werner, V., Gavryushin, A., Götz, M., Engelke, H., et al. (2017) Pore Wall Fluorescence Labeling of Covalent Organic Frameworks. CrystEngComm, 19, 4886-4891. >https://doi.org/10.1039/c7ce00684e Guo, H., Wang, J., Fang, Q., Zhao, Y., Gu, S., Zheng, J., et al. (2017) A Quaternary-Ammonium-Functionalized Covalent Organic Framework for Anion Conduction. CrystEngComm, 19, 4905-4910. >https://doi.org/10.1039/c7ce00042a Liu, M., Yang, S., Yang, X., Cui, C., Liu, G., Li, X., et al. (2023) Post-Synthetic Modification of Covalent Organic Frameworks for CO 2 Electroreduction. Nature Communications, 14, Article No. 3800. >https://doi.org/10.1038/s41467-023-39544-9 Yin, M., Wang, L. and Tang, S. (2023) Stable Dicationic Covalent Organic Frameworks Manifesting Notable Structure-Enhanced CO 2 Capture and Conversion. ACS Catalysis, 13, 13021-13033. >https://doi.org/10.1021/acscatal.3c02796 Diercks, C.S. and Yaghi, O.M. (2017) The Atom, the Molecule, and the Covalent Organic Framework. Science, 355, eaal1585. >https://doi.org/10.1126/science.aal1585 Cooper, A.I. (2013) Covalent Organic Frameworks. CrystEngComm, 15, 1483. >https://doi.org/10.1039/c2ce90122f Pachfule, P., Acharjya, A., Roeser, J., Langenhahn, T., Schwarze, M., Schomäcker, R., et al. (2018) Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 140, 1423-1427. >https://doi.org/10.1021/jacs.7b11255 Sick, T., Hufnagel, A.G., Kampmann, J., et al. (2018) Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting. Journal of the American Chemical Society, 140, 2085-2092. Ortiz, M., Cho, S., Niklas, J., Kim, S., Poluektov, O.G., Zhang, W., et al. (2017) Through-space Ultrafast Photoinduced Electron Transfer Dynamics of a C 70-Encapsulated Bisporphyrin Covalent Organic Polyhedron in a Low-Dielectric Medium. Journal of the American Chemical Society, 139, 4286-4289. >https://doi.org/10.1021/jacs.7b00220 Ben, H., Yan, G., Liu, H., Ling, C., Fan, Y. and Zhang, X. (2021) Local Spatial Polarization Induced Efficient Charge Separation of Squaraine-Linked COF for Enhanced Photocatalytic Performance. Advanced Functional Materials, 32, Article ID: 2104519. >https://doi.org/10.1002/adfm.202104519 Gao, Y., Nie, W., Zhu, Q., Wang, X., Wang, S., Fan, F., et al. (2020) The Polarization Effect in Surface‐Plasmon‐Induced Photocatalysis on Au/TiO 2 Nanoparticles. Angewandte Chemie International Edition, 59, 18218-18223. >https://doi.org/10.1002/anie.202007706 Chen, F., Huang, H., Guo, L., Zhang, Y. and Ma, T. (2019) The Role of Polarization in Photocatalysis. Angewandte Chemie International Edition, 58, 10061-10073. >https://doi.org/10.1002/anie.201901361 Liu, Y., Han, W., Chi, W., Fu, J., Mao, Y., Yan, X., et al. (2023) One-dimensional Covalent Organic Frameworks with Atmospheric Water Harvesting for Photocatalytic Hydrogen Evolution from Water Vapor. Applied Catalysis B: Environmental, 338, 123074. >https://doi.org/10.1016/j.apcatb.2023.123074 Wang, F., Yang, L., Wang, X., Rong, Y., Yang, L., Zhang, C., et al. (2023) Pyrazine‐Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H 2 Evolution with High Proton Transport. Small, 19, Article ID: 2207421. >https://doi.org/10.1002/smll.202207421 Mi, Z., Zhou, T., Weng, W., Unruangsri, J., Hu, K., Yang, W., et al. (2021) Covalent Organic Frameworks Enabling Site Isolation of Viologen‐Derived Electron‐Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 60, 9642-9649. >https://doi.org/10.1002/anie.202016618 Cheng, Y., Wang, R., Wang, S., Xi, X., Ma, L. and Zang, S. (2018) Encapsulating [Mo 3S 13] 2− Clusters in Cationic Covalent Organic Frameworks: Enhancing Stability and Recyclability by Converting a Homogeneous Photocatalyst to a Heterogeneous Photocatalyst. Chemical Communications, 54, 13563-13566. >https://doi.org/10.1039/c8cc07784c
Baidu
map