Figure 3. Intra-RATC with iodoacetonitrile as the radical source--图3. 碘代乙腈为自由基源的Intra-RATC--Figure 4. Intra-RATC reactions initiated by alkyl or sulfonyl radicals--图4. 烷基或砜基自由基启动的Intra-RATC反应--
Figure 8. Intra-RATC reaction using alkynones as starting materials--图8. 炔酮为原料的Intra-RATC反应--
另外,Intra-RATC策略也已被应用于复杂的天然产物与生物活性分子的合成中如(−)-erythrodiene
[13]
与(+)-juruenolide C
[14]
(
图9
),进一步彰显了其优异的应用价值。但需要指出的是,这类反应也存在着一定的局限性。首先,底物适用范围局限。早期报道多使用末端炔烃,而非末端炔烃的反应还很少见。其次,实现的环化模式有限。现有报道绝大多数是通过5-exo-trig环化构筑甲基环戊烷类化合物,其他五元碳环以及其他大小碳环的构筑仍很少见。
Figure 9. Applications of Intra-RATC reactions--图9. Intra-RATC反应的应用--
<xref></xref>Table 1. Overview of research progress in Intra-RATC reactionsTable 1. Overview of research progress in Intra-RATC reactions 表1. Intra-RATC反应研究进展总述
Figure 10. Challenges faced in Inter-RATC reactions--图10. Inter-RATC反应面临的挑战--Figure 11. Inter-RATC reaction with 1,4-dioxane as the radical Source--图11. 1,4-二氧六环为自由基源的Inter-RATC反应--
2015年,李金恒课题组报道了以1,4-二氧六环为自由基前体的Inter-RATC反应(
图11
)
[16]
。该反应以TBPB为引发剂,产生烷基自由基对分子内烯烃进行加成,形成中间体A,随后发生分子内的6-exo-dig环化反应,生成中间体B。在B中,烯基自由基经历了1,5-HAT和5-endo-trig环化反应,最终形成中间体D。D中的苄基自由基被TBPB氧化成苄基碳正离子,随后脱去一个质子得到最终产物。该反应与传统的[2+2+1]反应不同,没有使用一氧化碳作为1C合成子,而是使用了具有两个C(sp3)-H键的RXCH2R’ (X = O, S)底物作为1C合成子,并且在反应过程中这两个C(sp3)-H键发挥了不同的作用,为后续的Inter-RATC反应设计提供了新思路。然而,该反应仍存在一定局限性:一、自由基源局限于RXCH2R′ (X = O, S)类型,普通的烷基自由基在该反应中难以进行;二、产物的非对映选择性调控困难。同年,屠树江课题组报道了使用普通的环烷烃或二羰基化合物作为1C合成子的Inter-RATC反应(
图12
)
[17]
。该反应与李金恒课题组报道的反应主要区别在于不再需要杂原子来活化C(sp3)-H键,因此进一步提高了反应的效率和底物的兼容性。作者认为他们的反应经历了自由基对烯烃的加成、6-exo-trig环化,随后通过烯丙基自由基与烷基自由基的自由基偶联反应实现关环。但是他们的后续工作表明该反应更可能是通过1,5-HAT和5-endo-trig环化实现最后的关环。
Figure 12. Inter-RATC reactions with cycloalkanes or dicarbonyl compounds as radical sources--图12. 环烷烃或二羰基化合物作为自由基源的Inter-RATC反应--
Figure 16. Inter-RATC reaction involving Tri-Tert-Butylphosphine--图16. 三叔丁基膦参与的Inter-RATC反应--
<xref></xref>Table 2. Overview of research progress in inter-RATC reactionsTable 2. Overview of research progress in inter-RATC reactions 表2. Inter-RATC反应研究进展总述
References
Cao, H., Chen, F., Su, C. and Yu, L. (2019) Construction of Carbocycles from Methylenecyclopropanes. Advanced Synthesis&Catalysis, 362, 438-461. >https://doi.org/10.1002/adsc.201900615
Duarah, G., Kaishap, P.P., Begum, T. and Gogoi, S. (2018) Recent Advances in Ruthenium (II)-Catalyzed C-H Bond Activation and Alkyne Annulation Reactions. Advanced Synthesis&Catalysis, 361, 654-672.>https://doi.org/10.1002/adsc.201800755
Zhang, L., Yuan, S., Wang, P. and Liu, J. (2020) Recent Advances in Cyclization Reaction of Alkynes under Transition Metal-Free Conditions. Chinese Journal of Organic Chemistry, 40, 1529-1539. >https://doi.org/10.6023/cjoc201912029
Heiba, E.I. and Dessau, R.M. (1967) Free-Radical Isomerization. I. Novel Rearrangement of Vinyl Radicals. Journal of the American Chemical Society, 89, 3772-3777. >https://doi.org/10.1021/ja00991a017
Curran, D.P., Kim, D., Liu, H.T. and Shen, W. (1988) Translocation of Radical Sites by Intramolecular 1,5-Hydrogen Atom Transfer. Journal of the American Chemical Society, 110, 5900-5902. >https://doi.org/10.1021/ja00225a052
Huang, L., Ye, L., Li, X., Li, Z., Lin, J. and Liu, X. (2016) Stereoselective Radical Cyclization Cascades Triggered by Addition of Diverse Radicals to Alkynes to Construct 6(5)-6-5 Fused Rings. Organic Letters, 18, 5284-5287. >https://doi.org/10.1021/acs.orglett.6b02599
Yang, Y., Daniliuc, C.G. and Studer, A. (2020) 1,1,2-Trifunctionalization of Terminal Alkynes by Radical Addition-Translocation-Cyclization-Trapping for the Construction of Highly Substituted Cyclopentanes. Angewandte Chemie International Edition, 60, 2145-2148. >https://doi.org/10.1002/anie.202011785
Zhou, Y., Qin, Y., Wang, Q., Zhang, Z. and Zhu, G. (2021) Photocatalytic Sulfonylcarbocyclization of Alkynes Using SEt as a Traceless Directing Group: Access to Cyclopentenes and Indenes. Angewandte Chemie International Edition, 61, e202110864. >https://doi.org/10.1002/anie.202110864
Le, S., Bai, Y., Qiu, J., Zhang, Z., Zheng, H. and Zhu, G. (2022) Access to Cyclopentenones via Copper-Catalyzed 5-Endo Trifluoromethylcarbocyclization of Ynones. Organic Chemistry Frontiers, 9, 4670-4675. >https://doi.org/10.1039/d2qo00843b
Qiu, J., Le, S., Su, J., Liu, Y., Zhou, Y., Zheng, H., et al. (2022) A Diastereoselective Synthesis of Cyclopentanones via Photocatalytic Reductive Alkyltrifluoromethylation of Ynones. Organic Chemistry Frontiers, 9, 5523-5529. >https://doi.org/10.1039/d2qo01101h
Su, J., Guo, W., Liu, Y., Kong, L., Zheng, H. and Zhu, G. (2023) Cu-Catalyzed Cascade Difluoroalkylation/5-Endo Cyclization/β-Fluorine Cleavage of Ynones. Chemical Communications, 59, 1821-1824. >https://doi.org/10.1039/d2cc06068j
Su, J., Xu, J., Gu, Z., Zhou, Y., Zheng, H. and Zhu, G. (2023) Construction of Difluoroalkylated Cyclopentenones through Photocatalytic Difluoroalkylative 5-Endo Cyclization Cascades of Ynones. European Journal of Organic Chemistry, 26, e202300432. >https://doi.org/10.1002/ejoc.202300432
Lachia, M., Dénès, F., Beaufils, F. and Renaud, P. (2005) Highly Diastereoselective Formation of Spirocyclic Compounds via 1,5-Hydrogen Transfer: A Total Synthesis of Erythrodiene. Organic Letters, 7, 4103-4106. >https://doi.org/10.1021/ol051426r
Clive, D.L.J. and Ardelean, E. (2001) Synthesis of (+)-Juruenolide C: Use of Sequential 5-Exo-Digonal Radical Cyclization, 1,5-Intramolecular Hydrogen Transfer, and 5-Endo-Trigonal Cyclization. The Journal of Organic Chemistry, 66, 4841-4844. >https://doi.org/10.1021/jo010206y
Baldwin, J.E., Cutting, J., Dupont, W., Kruse, L., Silberman, L. and Thomas, R.C. (1976) 5-Endo-Trigonal Reactions: A Disfavoured Ring Closure. Journal of the Chemical Society, Chemical Communications, 1976, 736-738. >https://doi.org/10.1039/c39760000736
Hu, M., Song, R., Ouyang, X., Tan, F., Wei, W. and Li, J. (2016) Copper-Catalyzed Oxidative [2+2+1] Annulation of 1, n-Enynes with Α-Carbonyl Alkyl Bromides through C-Br/C-H Functionalization. Chemical Communications, 52, 3328-3331. >https://doi.org/10.1039/c5cc10132h
Jiang, B., Li, J., Pan, Y., Hao, W., Li, G. and Tu, S. (2017) Radical-Enabled Bicyclization Cascades of Oxygen-Tethered 1,7-Enynes Leading to Skeletally Diverse Polycyclic Chromen-2-Ones. Chinese Journal of Chemistry, 35, 323-334. >https://doi.org/10.1002/cjoc.201600571
Li, Y., Liu, B., Song, R., Wang, Q. and Li, J. (2016) Visible Light-Initiated C(sp
3)-Br/C(sp
3)-Functionalization of Α-Carbonyl Alkyl Bromides through Hydride Radical Shift. Advanced Synthesis&Catalysis, 358, 1219-1228. >https://doi.org/10.1002/adsc.201501134
Gao, F., Yang, C., Ma, N., Gao, G., Li, D. and Xia, W. (2016) Visible-Light-Mediated 1,7-Enyne Bicyclizations for Synthesis of Cyclopenta[c]quinolines and Benzo[j]phenanthridines. Organic Letters, 18, 600-603. >https://doi.org/10.1021/acs.orglett.5b03662
Jiao, M., Liu, D., Hu, X. and Xu, P. (2019) Photocatalytic Decarboxylative [2+2+1] Annulation of 1,6-Enynes with n-Hydroxyphthalimide Esters for the Synthesis of Indene-Containing Polycyclic Compounds. Organic Chemistry Frontiers, 6, 3834-3838. >https://doi.org/10.1039/c9qo01166h
Yu, J., Teng, F., Xiang, J., Deng, W. and Li, J. (2019) One-Carbon Incorporation Using Cyclobutanone Oxime Ester Enabled [2+2+1] Carboannulation of 1,7-Enynes by C-C/N-O Bond Cleavage and C-H Functionalization. Organic Letters, 21, 9434-9437. >https://doi.org/10.1021/acs.orglett.9b03643
Correia, J.T.M., Piva da Silva, G., André, E. and Paixão, M.W. (2019) Photoredox Decarboxylative Alkylation/(2+2+1) Cycloaddition of 1,7-Enynes: A Cascade Approach towards Polycyclic Heterocycles Using n-(Acyloxy)phthalimides as Radical Source. Advanced Synthesis&Catalysis, 361, 5558-5564. >https://doi.org/10.1002/adsc.201900657
Qu, Y., Xu, W., Zhang, J., Liu, Y., Li, Y., Song, H., et al. (2020) Visible-Light-Mediated [2+2+1] Carbocyclization Reactions of 1,7-Enynes with Bromofluoroacetate to Form Fused Monofluorinated Cyclopenta[c]quinolin-4-Ones. The Journal of Organic Chemistry, 85, 5379-5389. >https://doi.org/10.1021/acs.joc.0c00087
Cao, Z., Li, J. and Zhang, G. (2021) Photo-Induced Copper-Catalyzed Sequential 1, n-Hat Enabling the Formation of Cyclobutanols. Nature Communications, 12, Article No. 6404. >https://doi.org/10.1038/s41467-021-26670-5
Le, S., Li, J., Feng, J., Zhang, Z., Bai, Y., Yuan, Z., et al. (2022) [3+2] Cycloaddition of Alkyl Aldehydes and Alkynes Enabled by Photoinduced Hydrogen Atom Transfer. Nature Communications, 13, Article No. 4734. >https://doi.org/10.1038/s41467-022-32467-x
Masuda, Y., Ikeshita, D., Higashida, K., Yoshida, M., Ishida, N., Murakami, M., et al. (2023) Photocatalytic 1,2-Phosphorus-Migrative [3 +2] Cycloaddition of Tri(t-Butyl)phosphine with Terminal Alkynes. Journal of the American Chemical Society, 145, 19060-19066. >https://doi.org/10.1021/jacs.3c06760