3. 结果和讨论3.1. 单层WS<sub>2</sub>和AlN的结构和电子性质Figure 1. (a) Atomic structure diagram of WS2; (b) Energy band structure diagram of WS2; (c) Atomic structure diagram of monolayer AlN; (d) Energy band structure diagram of monolayer AlN--图1. (a) WS2的原子结构图;(b)单层WS2的能带结构图;(c)单层AlN的原子结构图;(d) AlN的能带结构图--
<xref></xref>Table 1. Lattice constants (ɑ), layer spacing (h), bond lengths (dGe-C, dW-S), and binding energies (E<sub>b</sub>) of the 1 × 1 × 1 WS<sub>2</sub>/AlN hetero-bilayerTable 1. Lattice constants (ɑ), layer spacing (h), bond lengths (dGe-C, dW-S), and binding energies (Eb) of the 1 × 1 × 1 WS2/AlN hetero-bilayer 表1. 1 × 1 × 1的WS2/AlN异质双层的晶格常数(a)、层间距(h)、键长(dAl-N, dW-S)以及结合能(Eb)
Stacking model
a = b (Å)
dAl-N (Å)
dW-S (Å)
h (Å)
Eb(eV)
A1
3.146
1.817
2.408
2.886
−0.274
A2
3.141
1.814
2.407
3.504
−0.160
B1
3.141
1.813
2.407
3.506
−0.159
B2
3.148
1.818
2.405
2.888
−0.272
C1
3.143
1.815
2.408
3.198
−0.217
C2
3.145
1.816
2.407
3.180
−0.214
Figure 2. Side and top views of the atomic structure of WS2/AlN hetero-bilayer in six stacking modes (a) A1-stacking; (b) A2-stacking; (c) B1-stacking; (d) B2-stacking; (e) C1-stacking; (f) C2-stacking--图2. WS2/AlN异质双层的六种堆叠方式原子结构的侧视图和俯视图(a) A1-stacking;(b) A2-stacking;(c) B1-stacking;(d) B2-stacking;(e) C1-stacking;(f) C2-stacking--
References
Huang, G., Chen, Z., Li, M., Yang, B., Xin, M., Li, S., et al. (2016) Surface Functional Modification of Graphene and Graphene Oxide. Acta Chimica Sinica, 74, 789-799. >https://doi.org/10.6023/a16070360
Li, Y., Li, J.L., Zhu, Q.S., et al. (2021) Research Progress in Graphene Based Thermal Conductivity Materials. Journal of Materials Engineering, 49, 1-13.
Mahmood, J., Li, F., Jung, S., Okyay, M.S., Ahmad, I., Kim, S., et al. (2017) An Efficient and pH-Universal Ruthenium-Based Catalyst for the Hydrogen Evolution Reaction. Nature Nanotechnology, 12, 441-446. >https://doi.org/10.1038/nnano.2016.304
Mahmood, J., Lee, E.K., Jung, M., Shin, D., Jeon, I., Jung, S., et al. (2015) Nitrogenated Holey Two-Dimensional Structures. Nature Communications, 6, Article No. 6486. >https://doi.org/10.1038/ncomms7486
Yang, S., Li, W., Ye, C., Wang, G., Tian, H., Zhu, C., et al. (2017) C
3N—A 2D Crystalline, Hole‐Free, Tunable‐Narrow‐bandgap Semiconductor with Ferromagnetic Properties. Advanced Materials, 29, Article ID: 1605625. >https://doi.org/10.1002/adma.201605625
Mahmood, J., Lee, E.K., Jung, M., Shin, D., Choi, H., Seo, J., et al. (2016) Two-Dimensional Polyaniline (C
3N) from Carbonized Organic Single Crystals in Solid State. Proceedings of the National Academy of Sciences of the United States of America, 113, 7414-7419. >https://doi.org/10.1073/pnas.1605318113
Ong, W., Tan, L., Ng, Y.H., Yong, S. and Chai, S. (2016) Graphitic Carbon Nitride (g-C
3N
4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chemical Reviews, 116, 7159-7329. >https://doi.org/10.1021/acs.chemrev.6b00075
Cao, S., Low, J., Yu, J. and Jaroniec, M. (2015) Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials, 27, 2150-2176. >https://doi.org/10.1002/adma.201500033
Chhowalla, M., Shin, H.S., Eda, G., Li, L., Loh, K.P. and Zhang, H. (2013) The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chemistry, 5, 263-275. >https://doi.org/10.1038/nchem.1589
Bhimanapati, G.R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., et al. (2015) Recent Advances in Two-Dimensional Materials Beyond Graphene. ACS Nano, 9, 11509-11539. >https://doi.org/10.1021/acsnano.5b05556
Jiang, J., Zhao, Z., Gao, J., Li, T., Li, M., Zhou, D., et al. (2022) Nitrogen Vacancy-Modulated Peroxymonosulfate Nonradical Activation for Organic Contaminant Removal via High-Valent Cobalt-Oxo Species. Environmental Science&Technology, 56, 5611-5619. >https://doi.org/10.1021/acs.est.2c01913
Liu, C., Dai, H., Tan, C., Pan, Q., Hu, F. and Peng, X. (2022) Photo-Fenton Degradation of Tetracycline over Z-Scheme Fe-G-C
3N
4/Bi
2WO
6 Heterojunctions: Mechanism Insight, Degradation Pathways and DFT Calculation. Applied Catalysis B: Environmental, 310, Article ID: 121326. >https://doi.org/10.1016/j.apcatb.2022.121326
Grimme, S., Antony, J., Ehrlich, S. and Krieg, H. (2010) A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics, 132, Article ID: 154104. >https://doi.org/10.1063/1.3382344
Mollaamin, F. and Monajjemi, M. (2023) Tailoring and Functionalizing the Graphitic-Like Gan and Gap Nanostructures as Selective Sensors for NO, NO
2, and NH
3 Adsorbing: A DFT Study. Journal of Molecular Modeling, 29, Article No. 170. >https://doi.org/10.1007/s00894-023-05567-8
Liu, H., Chen, W., Zhang, Z., Wu, K. and Tang, Z. (2023) Comparison of Gas-Sensitive Properties of Au, Ag and Cu Metal-Doped Gannt for SF6 Decomposition Gases. Applied Surface Science, 620, Article ID: 156811. >https://doi.org/10.1016/j.apsusc.2023.156811
Ismail, P.M., Ali, S., Raziq, F., Bououdina, M., Abu-Farsakh, H., Xia, P., et al. (2023) Stable and Robust Single Transition Metal Atom Catalyst for CO
2 Reduction Supported on Defective WS
2. Applied Surface Science, 624, Article ID: 157073. >https://doi.org/10.1016/j.apsusc.2023.157073
Wang, H., Xu, J., Zhang, Q., Hu, S., Zhou, W., Liu, H., et al. (2022) Super‐hybrid Transition Metal Sulfide Nanoarrays of CO
3S
4 Nanosheet/P‐Doped WS
2 Nanosheet/Co
9S
8 Nanoparticle with Pt‐like Activities for Robust All‐Ph Hydrogen Evolution. Advanced Functional Materials, 32, Article ID: 2112362. >https://doi.org/10.1002/adfm.202112362
Ju, L., Dai, Y., Wei, W., Li, M. and Huang, B. (2018) DFT Investigation on Two-Dimensional GeS/WS
2 Van Der Waals Heterostructure for Direct Z-Scheme Photocatalytic Overall Water Splitting. Applied Surface Science, 434, 365-374. >https://doi.org/10.1016/j.apsusc.2017.10.172