jcpm Journal of Clinical Personalized Medicine 2334-3354 2334-3443 beplay体育官网网页版等您来挑战! 10.12677/jcpm.2024.34392 jcpm-104284 Articles 医药卫生 仿生微纳米马达在生物医学领域的研究进展
Research Progress of Biomimetic Micro/Nanomotors in the Biomedical Field
1 2 3 钟雯婕 1 2 3 1 2 3 重庆医科大学附属口腔医院正畸科,重庆 口腔疾病与生物医学重庆市重点实验室,重庆 重庆市高校市级口腔生物医学工程重点实验室,重庆 01 11 2024 03 04 2763 2770 27 11 :2024 21 11 :2024 21 12 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 微/纳米马达在生物医学中的应用在近年来引起了广泛的研究,结合囊泡的微/纳米马达在生物医学领域具有极大的应用潜力,由于微/纳米马达的自驱动力以及囊泡本身具有的良好的生物相容性使其在药物递送、光热疗法、解毒等领域均有所应用。本文回顾了结合囊泡的微/纳米马达的制备方式,以及结合不同类型囊泡的微纳米马达的驱动力、结合方式及应用。总而言之,结合囊泡的微/纳米马达有望推进微/纳米马达在生物医学领域的应用,并促进其临床转化。
The application of micro/nanomotors in biomedicine has garnered widespread attention in recent years. The integration of vesicles with micro/nanomotors holds significant potential in the biomedical field. Due to the self-propelling nature of micro/nanomotors and the excellent biocompatibility of vesicles, they have been applied in areas such as drug delivery, photothermal therapy, and detoxification. This article reviews the preparation methods of micro/nanomotors combined with vesicles, as well as the driving forces, coupling methods, and applications of micro/nanomotors integrated with different types of vesicles. In summary, micro/nanomotors combined with vesicles are expected to advance the application of micro/nanomotors in biomedicine and promote their clinical translation.
微/纳米马达,囊泡,制备,应用,生物医学
Micro/Nanomotors
Vesicles Preparation Applications Biomedicine
1. 引言

近年来,合成微/纳米马达的开发与应用取得了巨大的进展。合成微/纳米马达是一种可将其他形式的能量转化为机械能来推动自身的小型自驱动设备,可在不同介质中执行复杂的任务 [1] [2] 。其在生物医学中可用作诊断 [3] 、药物递送 [4] [5] 、显微外科手术 [6] 、解毒 [7] 等,但生物相容性与生物安全性阻碍了其在生物医学中更广泛的应用 [8] 。就微/纳米马达而言,其生物性能在很大程度上与合成材料相关,所以要提高微/纳米马达的生物相容性与生物安全性可通过利用仿生设计来减小其在生理环境中运行时所造成的危害 [9]

将合成微纳米马达的自驱力与天然细胞所具有的独特的生物学功能相结合,得到了类细胞微/纳米马达 [10] 。细胞外囊泡(EVs)是源于细胞膜的脂质双层封闭的细胞衍生颗粒 [11] ,是药物传递的有效载体,具有稳定性好、生物相容性好、免疫原性低、容量大等优点 [12] ,通过工程化方法制备的工程化囊泡及聚合物囊泡,在保留EVs本身良好生物学功能的同时使囊泡的产量等进一步提升 [13] ,有利于临床应用。而将各种囊泡与微/纳米马达相结合得到了一种新型的具有活性的生物相容性设备,为生物医学更广泛的应用提供了新功能。

在本综述中,重点讨论了结合囊泡的微/纳米马达的制备以及在生物医学中的应用。囊泡在机体中有着至关重要的作用,利用囊泡与微/纳米马达相结合,可以解决合成微/纳米马达在体内生物相容性低、具有生物污染性等问题,同时赋予其更为广泛的特性,提高了微/纳米马达的性能。不同来源及类型的囊泡使得具有广泛适用性的微/纳米马达的开发成为可能,结合囊泡的微/纳米马达在药物递送、解毒、癌症治疗等方面都已显示出强大的效果。下文对于结合囊泡的微/纳米马达的制备、发展、功能及代表性的应用进行了回顾,并且讨论了前景与发展机遇。

2. 结合囊泡的微/纳米马达的制备

结合囊泡的微/纳米马达的设计与制造对于其在生物医学中的应用是尤为重要的,首先囊泡作为一种细胞膜模拟物,所以微/纳米马达与囊泡如何结合是需要引起考虑的问题,再者马达进入机体之后需要利用自驱动力产生运动以完成复杂的任务,所以其驱动方式是另一个需要考量的因素。在本节中,重点讨论了结合囊泡的微/纳米马达的囊泡来源、微/纳米马达与囊泡的结合方式及微/纳米马达的驱动力来源。

2.1. 与微/纳米马达结合的囊泡的来源

囊泡包括天然细胞来源的细胞外囊泡也包括通过工程化方法制备的工程化囊泡与聚合物囊泡。细胞外囊泡根据其来源可分为核内体来源的外泌体与质膜来源的胞外体,根据其大小可分为大、中、小三型。其中以凋亡小体、微囊泡、外泌体最为常见 [13] 。EVs由于其来源于天然细胞而具有良好的生物相容性与靶向性,在癌症、神经退行性疾病、心血管疾病等的治疗诊断中具有极大的潜力 [14] 。不同来源的EVs可作为治疗靶点,生物标记物以及药物递送平台 [15] ,但由于EVs来源于天然细胞,在给药过程中给药效率较低而阻碍了其临床应用。

工程化囊泡是一种通过表面改造或用功能配体修饰以实现将内外源性分子、药物、蛋白质或核酸负载到EVs的表面或腔内,或实现将小细胞外囊泡靶向特定类型的细胞或组织,从多角度多方面改善小细胞外囊泡的递送性能 [16] ,在促进EVs临床应用上具有显著意义。而聚合物囊泡是一种具有中空球体结构,由嵌段共聚物自组装构成的高分子聚集体 [17] ,它并非天然细胞膜来源,但由于其结构与天然囊泡相似也作为囊泡的一种。通过将囊泡所具有的特有的靶向性、生物相容性与微/纳米马达结合,一方面可由于囊泡本身的生物学性能而降低微/纳米马达的免疫原性,增加微/纳米马达的生物安全性,提高其生物利用率,另一方面依靠微/纳米马达的自驱动力更加高效地进行药物递送。

2.2. 微/纳米马达与囊泡的结合

为了更好发挥微/纳米马达的作用,就需要以一种可靠的方式将微/纳米马达与囊泡结合起来。近年来,很多研究者注意到了生物膜直接涂敷于纳米颗粒可有效提高纳米颗粒的免疫原性,据此而发展出了一种细胞膜包被的纳米医学平台。细胞膜对于纳米颗粒的包被可通过细胞膜与微/纳米马达产生的静电吸附作用使之与马达产生牢固的结合。Gorgoll等人通过静电相互作用将金纳米粒子(NP)吸附于直径约30 nm的疏水性脂质双层囊泡,得到NP-囊泡杂化物 [18] 。NP-囊泡杂交体可承受高温,色谱纯化和高盐浓度等条件,具有极大的稳定性。Zhu等人则是通过利用均聚物囊泡的两亲性将其与AuNPs有效结合用于有效的环境修复 [19]

3. 结合囊泡的微/纳米马达

结合囊泡的微/纳米马达根据所结合的囊泡种类不同也可相应地分为不同类型,本节从囊泡种类出发,对不同种类的结合囊泡的微/纳米马达进行了叙述。

3.1. 结合脂质体囊泡的微/纳米马达

脂质体是由卵磷脂和神经酰胺等制得,具有双分子层结构,可有效包被及运输活性物质以及可有效穿透细胞膜与各种生物屏障,具有良好的生物相容性及生物安全性。脂质体已广泛应用于药物递送,在肺部疾病、糖尿病及癌症等领域均有应用 [20] 。而将脂质体的流动性与微/纳米马达相结合可进一步提高其药物递送能力。Wang等人提出了一种脂质体纳米马达系统,用于加速哺乳动物HepG2癌细胞和烟草(Nb)植物叶片的细胞摄取 [21] 。这种纳米马达系统通过将对称的金核–铂壳纳米颗粒(Au@Pt)引入具有流动性的脂质体粒子赋予其不对称性,进而通过Au@Pt上的H2O2酶驱动纳米马达。此外利用脂质体所具有的酸性保护特性Hortelão等报道了一种由含有脲酶的脂质体载体组成的LipoBots (LBs) [22] ,利用薄膜水化和挤出法制备出了脲酶静电吸附于脂质体表面或封装于其中两种类型的纳米马达,通过实验发现脲酶结合于表面时具有更加优越的运动性能。此外脂质体还可利用脂质相的提取和分离得到一种Jansus结构,进而驱动纳米马达的运动 [23]

结合脂质体的纳米马达利用脂质体本身的高流动性与生物相容性,大多采用酶驱动的方式进行自推动运动,一方面利用脂质体对生物酶的保护作用延长了纳米马达的作用时间,另一方面得益于纳米马达的自驱动性而使得脂质体对纳米粒子的递送效率进一步增加。

3.2. 结合细胞膜的微/纳米马达

结合细胞膜的微/纳米马达可由多种机制驱动,其制造过程包括细胞膜囊泡的制备、微/纳米马达的制备以及细胞膜囊泡与微/纳米马达的结合。本节主要关注不同类型微/纳米马达的驱动力来源与制备。

红细胞(RBC)是数量最多的一类血细胞,具有运输氧气、二氧化碳及免疫功能,由于红细胞易于获取,并且免疫细胞对其清除有限,红细胞膜一类较为理想的纳米粒子包被来源 [24] 。在药物递送 [25] 、成像 [26] 、解毒 [7] 、氧气输送及免疫调节 [27] 等领域均有广泛的应用。

近来红细胞膜包被的微/纳米马达在生物医学应用广泛。将红细胞的高携氧能力与金纳米线纳米马达(AuNW)相结合用于细胞内氧气的主动递送 [28] 。基于静电相互作用将正电荷的聚-l-赖氨酸层(PLL)引入3-巯基丙酸(MPA)单层功能化的AuNW表面,再通过进一步的静电相互作用将带负电荷的RBC膜固定于AuNW/MPA/PLL表面,得到的AuNW可在超声场中主动向巨噬细胞进行氧气递送。Wu等人则是将AuNW与红细胞膜通过静电排斥作用进行融合进而用于清除体内由于细菌感染或毒物损伤等引起的毒力因子 [7]

此外,Sao等人将肝素与壳聚糖以逐层自组装的方式构建了可降解的生物相容性胶囊 [29] ,其中肝素可用于血栓消融,再通过在胶囊表面溅射金涂层获得了NIR响应的Janus结构,实现了聚合物马达的自电泳效应,进而通过与红细胞膜结合使其能够在生物环境中实现有效移动。这种生物混合微马达具有红外驱动与溶栓的双重作用,通过在PBS、细胞培养基以及血清和血液等不同溶液中的运动行为进行表征,显示了微马达优异的运动能力,在由凝血酶构建的血栓模型中评估了微马达的溶栓能力。发现在NIR下微马达可实现有效的溶栓。

血小板是血液的另一主要组成部分,又称为血栓细胞,血小板膜类似于其他细胞膜,但其磷脂作为疏水核心排列于脂质双层结构中 [30] 。人血小板具有免疫逃避 [31] [32] 、内皮下黏附 [33] [34] 、病原体相互作用 [35] 以及止血作用 [36] [37] 。近来,微/纳米马达在药物递送中表现出高效的推进力,将其与血小板膜结合可进一步提高血小板在免疫逃避及抗菌与细胞靶向方面的作用。

Li等人提出了一种由血小板膜包被的纳米马达(PL马达) [38] ,这是一种由外界磁场驱动的磁性螺旋纳米马达,通过模板辅助沉积法合成纳米螺旋结构,再应用电子束蒸发法与溅射法将镍层与金层涂覆再马达表面,利用MPA处理使其带负电,最后通过静电相互作用使血小板膜包被于其上。由于血小板膜的存在而使得纳米马达具有免疫逃逸能力与解毒作用,此外还可快速细菌分离与靶向药物递送。除螺旋马达外脲酶驱动的Janus血小板微马达通过脲酶的不对称分布也可产生自电泳运动,可有效靶向癌细胞与细菌 [39]

利用血小板膜包被微/纳米马达可在药物递送中防止药物泄漏与发生脱靶现象,提高给药效率。Huang等人制备了一种基于Janus介孔二氧化硅(JAMS)可载药的多孔纳米马达,以血小板膜包被防止药物泄漏,用于动脉粥样硬化治疗 [40] 。Wan等人也提出了一种血小板膜包被的介孔/大孔二氧化硅/铂纳米马达,在近红外下血小板膜发生破裂有序释放溶栓尿激酶和抗凝血肝素,用于血栓的治疗 [41]

白细胞是血细胞的另一重要部分,包括中性粒细胞、树突状细胞、T细胞、B细胞及巨噬细胞等 [42] 。Wang等人将白细胞膜包被于稼纳米马达用于识别或靶向癌细胞以及抗菌治疗 [43] 。这种纳米马达呈针状外观,使用压力–过滤器–模板法制备并在超声辅助下将白细胞膜囊泡融合至马达表面,并选择多柔比星(DOX)作为模型药物加载于马达上,与未结合白细胞膜的马达相比,在生物培养基中白细胞膜包被液态金属纳米马达的运动寿命和速度均有所提升,显示了细胞膜涂层对抗生物污染保护的作用。

癌细胞由于其细胞膜上存在特异性的抗原可以产生靶向作用 [44] ,将微/纳米马达与癌细胞膜相结合就可以通过同型靶向效应使癌细胞归巢 [45] 。将G422 (鼠癌细胞的一种)包覆金纳米壳碳酸钙纳米马达可用于减少微米马达的免疫原性 [46] 。微马达核心呈纺锤状,通过共沉淀法制备,然后在其上包覆金纳米层并与癌细胞膜共孵育得到最终的微马达。

近来Zhou等人将DOX加载至半yolk@spiky壳二氧化碳硅纳米马达中 [47] ,最后通过癌细胞膜包被赋予其肿瘤靶向性,该马达呈一种尖壳结构,可更大化地负载药物,在NIR照射下碳产生光热效应驱动马达用于乳腺癌的光热治疗和化疗。通过体外实验发现细胞膜包被与无膜包被相比可增强近两倍马达的自驱动能力,其靶向能力与内化效应均显示出了明显的增加。表明癌细胞膜包被可有效提升纳米马达的性能。

3.3. 结合外泌体的微/纳米马达

外泌体是由各种细胞分泌的直径30~150 nm的一种囊泡,其在细胞间通讯的很多生物过程中均有重要作用 [48] 。将外泌体通过工程化的手段可将一些特殊的蛋白质或化学物质与其结合后将其改性,再将改性的外泌体与微/纳米马达结合发挥靶向性及生物相容性方面的作用。Liu等人将外泌体与一氧化氮纳米马达相结合并将其设计为一个微针阵列用于跟腱病的治疗 [49] 。外泌体较常规的跟腱病治疗药物具有更优越的效果,并且具有低免疫原性、低分化性及非致癌性,一氧化氮纳米马达是一种化学纳米马达,将L-精氨酸包裹于外泌体周围形成了负载外泌体的纳米马达,通过微针进行透皮给药以修复肌腱组织。

Wang等人也将外泌体与纳米马达结合起来形成了一种工程外泌体用于帕金森病(PD)治疗 [50] 。对于外泌体与纳米马达的结合方式,研究人员提出了外泌体与纳米马达“一对多”、“一对一”及“多对一”三种结合方式,并通过理论模拟的方法研究发现当“一对一”时反应概率及表面结合位点均较高,表明此种结合方式最佳。该马达可对PD微环境中受损的神经元细胞和线粒体实现高效准确地靶向,有效治疗PD。

3.4. 结合聚合物囊泡的微/纳米马达

聚合物囊泡是一类由嵌段共聚物自组装构成的具有中空球体结构高分子聚集体。口型红细胞是聚合物囊泡的一种,现已广泛用于与微/纳米马达结合。Tu等人通过功能性嵌段共聚物自组装形成了口型红细胞,后有通过在其中加入铂纳米颗粒形成了光敏聚合物纳米马达 [51] 。使用蓝光作为激发力使马达发生过氧化氢分解,以气泡驱动马达运动,可实现药物的控释与有效输送。此外他们团队提出了另外一种由氧化还原反应驱动的在谷胱甘肽存在下进行药物递送的口型细胞纳米马达 [52] 。将可降解材料铂纳米颗粒引入可进一步扩展口型细胞纳米马达在生物医学中的应用 [53]

聚合物囊泡纳米马达在癌症治疗中的作用近来也有一些报道,Cui等人利用NIR激发过氧化氢驱动的口型细胞纳米马达用于癌症的光热治疗 [54] 。纳米马达在NIR下由于其内封装的萘酞菁(NC)可发生集群运动,使纳米马达靶向癌症部位,产生对癌细胞光热消融的作用。而Zhang等人则是利用外部磁场使纳米马达中离子体靶向癌症部位,在H2O2驱动下用于癌症的治疗 [55]

4. 总结与展望

在本综述中,对结合囊泡的微/纳米马达的制备,囊泡来源以及纳米马达的种类等进行了阐述。将具有自驱动力的微/纳米马达与囊泡这种具有一定生物相容性的材料结合为微/纳米马达在体内进行一系列的操作提供了相当大的希望,为微/纳米马达的生物医学应用奠定了基础。尽管这些微/纳米马达在生物医学应用中已展现出了其特有的优势,但在体内成像、长期发挥作用以及临床转化等方面仍存在种种问题。对于未来结合囊泡的微/纳米马达的发展应更多地着眼于多学科的合作,克服其现有的障碍,使结合囊泡的微/纳米马达具有更多的新的功能以推动微/纳米马达及纳米医学的发展。

基金项目

重庆市研究生科研创新项目(CYS23346);重庆医科大学口腔医学院研究生科研创新项目(KQY202303)。

NOTES

*通讯作者。

References Wan, M., Li, T., Chen, H., Mao, C. and Shen, J. (2021) Biosafety, Functionalities, and Applications of Biomedical Micro/Nanomotors. Angewandte Chemie International Edition, 60, 13158-13176. >https://doi.org/10.1002/anie.202013689 Xia, X., Li, Y., Xiao, X., Zhang, Z., Mao, C., Li, T., et al. (2023) Chemotactic Micro/Nanomotors for Biomedical Applications. Small, 20, Article ID: 2306191. >https://doi.org/10.1002/smll.202306191 Kagan, D., Calvo-Marzal, P., Balasubramanian, S., Sattayasamitsathit, S., Manesh, K.M., Flechsig, G., et al. (2009) Chemical Sensing Based on Catalytic Nanomotors: Motion-Based Detection of Trace Silver. Journal of the American Chemical Society, 131, 12082-12083. >https://doi.org/10.1021/ja905142q Hansen‐Bruhn, M., de Ávila, B.E., Beltrán‐Gastélum, M., Zhao, J., Ramírez‐Herrera, D.E., Angsantikul, P., et al. (2018) Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasound‐Propelled Nanomotors. Angewandte Chemie International Edition, 57, 2657-2661. >https://doi.org/10.1002/anie.201713082 Xuan, M., Shao, J., Lin, X., Dai, L. and He, Q. (2014) Self‐Propelled Janus Mesoporous Silica Nanomotors with Sub‐100 Nm Diameters for Drug Encapsulation and Delivery. ChemPhysChem, 15, 2255-2260. >https://doi.org/10.1002/cphc.201402111 Sokolov, I.L., Cherkasov, V.R., Tregubov, A.A., Buiucli, S.R. and Nikitin, M.P. (2017) Smart Materials on the Way to Theranostic Nanorobots: Molecular Machines and Nanomotors, Advanced Biosensors, and Intelligent Vehicles for Drug Delivery. Biochimica et Biophysica Acta (BBA)—General Subjects, 1861, 1530-1544. >https://doi.org/10.1016/j.bbagen.2017.01.027 Wu, Z., Li, T., Gao, W., Xu, T., Jurado‐Sánchez, B., Li, J., et al. (2015) Cell‐Membrane‐Coated Synthetic Nanomotors for Effective Biodetoxification. Advanced Functional Materials, 25, 3881-3887. >https://doi.org/10.1002/adfm.201501050 Ou, J., Liu, K., Jiang, J., Wilson, D.A., Liu, L., Wang, F., et al. (2020) Micro‐/Nanomotors toward Biomedical Applications: The Recent Progress in Biocompatibility. Small, 16, Article ID: 1906184. >https://doi.org/10.1002/smll.201906184 Wang, S., Xu, J., Zhou, Q., Geng, P., Wang, B., Zhou, Y., et al. (2021) Biodegradability of Micro/nanomotors: Challenges and Opportunities. Advanced Healthcare Materials, 10, Article ID: 2100335. >https://doi.org/10.1002/adhm.202100335 Esteban-Fernández de Ávila, B., Gao, W., Karshalev, E., Zhang, L. and Wang, J. (2018) Cell-Like Micromotors. Accounts of Chemical Research, 51, 1901-1910. >https://doi.org/10.1021/acs.accounts.8b00202 Buzas, E.I. (2022) The Roles of Extracellular Vesicles in the Immune System. Nature Reviews Immunology, 23, 236-250. van den Boorn, J.G., Schlee, M., Coch, C. and Hartmann, G. (2011) SiRNA Delivery with Exosome Nanoparticles. Nature Biotechnology, 29, 325-326. >https://doi.org/10.1038/nbt.1830 de Abreu, R.C., Fernandes, H., da Costa Martins, P.A., Sahoo, S., Emanueli, C. and Ferreira, L. (2020) Native and Bioengineered Extracellular Vesicles for Cardiovascular Therapeutics. Nature Reviews Cardiology, 17, 685-697. >https://doi.org/10.1038/s41569-020-0389-5 Colombo, M., Raposo, G. and Théry, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289. >https://doi.org/10.1146/annurev-cellbio-101512-122326 Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. >https://doi.org/10.1126/science.aau6977 Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S. and Wood, M.J.A. (2011) Delivery of SiRNA to the Mouse Brain by Systemic Injection of Targeted Exosomes. Nature Biotechnology, 29, 341-345. >https://doi.org/10.1038/nbt.1807 Discher, D.E. and Eisenberg, A. (2002) Polymer Vesicles. Science, 297, 967-973. >https://doi.org/10.1126/science.1074972 Gorgoll, R.M., Tsubota, T., Harano, K. and Nakamura, E. (2015) Cooperative Self-Assembly of Gold Nanoparticles on the Hydrophobic Surface of Vesicles in Water. Journal of the American Chemical Society, 137, 7568-7571. >https://doi.org/10.1021/jacs.5b03632 Zhu, Y., Fan, L., Yang, B. and Du, J. (2014) Multifunctional Homopolymer Vesicles for Facile Immobilization of Gold Nanoparticles and Effective Water Remediation. ACS Nano, 8, 5022-5031. >https://doi.org/10.1021/nn5010974 Chenthamara, D., Subramaniam, S., Ramakrishnan, S.G., Krishnaswamy, S., Essa, M.M., Lin, F., et al. (2019) Therapeutic Efficacy of Nanoparticles and Routes of Administration. Biomaterials Research, 23, Article No. 20. >https://doi.org/10.1186/s40824-019-0166-x Wang, Z., Yan, Y., Li, C., Yu, Y., Cheng, S., Chen, S., et al. (2022) Fluidity-guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano, 16, 9019-9030. >https://doi.org/10.1021/acsnano.2c00327 Hortelão, A.C., García‐Jimeno, S., Cano‐Sarabia, M., Patiño, T., Maspoch, D. and Sanchez, S. (2020) LipoBots: Using Liposomal Vesicles as Protective Shell of Urease‐Based Nanomotors. Advanced Functional Materials, 30, Article ID: 2002767. >https://doi.org/10.1002/adfm.202002767 Cui, J., Jin, H. and Zhan, W. (2022) Enzyme-free Liposome Active Motion via Asymmetrical Lipid Efflux. Langmuir, 38, 11468-11477. >https://doi.org/10.1021/acs.langmuir.2c01866 Fang, R.H., Kroll, A.V., Gao, W. and Zhang, L. (2018) Cell Membrane Coating Nanotechnology. Advanced Materials, 30, Article ID: 1706759. >https://doi.org/10.1002/adma.201706759 Jan, N., Madni, A., Khan, S., et al. (2022) Biomimetic Cell Membrane-Coated Poly(Lactic-Co-Glycolic Acid) Nanoparticles for Bio-Medical Applications. Bioengineering&Translational Medicine, 8, e10441. Dehaini, D., Wei, X., Fang, R.H., Masson, S., Angsantikul, P., Luk, B.T., et al. (2017) Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Advanced Materials, 29, Article ID: 1606209. >https://doi.org/10.1002/adma.201606209 Guo, Y., Wang, D., Song, Q., Wu, T., Zhuang, X., Bao, Y., et al. (2015) Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma. ACS Nano, 9, 6918-6933. >https://doi.org/10.1021/acsnano.5b01042 Zhuang, J., Ying, M., Spiekermann, K., Holay, M., Zhang, Y., Chen, F., et al. (2018) Biomimetic Nanoemulsions for Oxygen Delivery in Vivo. Advanced Materials, 30, Article ID: 1804693. >https://doi.org/10.1002/adma.201804693 Shao, J., Abdelghani, M., Shen, G., Cao, S., Williams, D.S. and van Hest, J.C.M. (2018) Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano, 12, 4877-4885. >https://doi.org/10.1021/acsnano.8b01772 Boudreaux, M.K. and Christopherson, P.W. (2022) Platelet Structure. In: Brooks, M.B., Harr, K.E., Seelig, D.M., Wardrop, K.J. and Weiss, D.J., Eds., Schalm’s Veterinary Hematology, Wiley-Blackwell, 658-666. Olsson, M., Bruhns, P., Frazier, W.A., Ravetch, J.V. and Oldenborg, P. (2005) Platelet Homeostasis Is Regulated by Platelet Expression of CD47 under Normal Conditions and in Passive Immune Thrombocytopenia. Blood, 105, 3577-3582. >https://doi.org/10.1182/blood-2004-08-2980 Valant, P.A., Jy, W., Horstman, L.L., Mao, W. and Ahn, Y.S. (1998) Thrombotic Thrombocytopenic Purpura Plasma Enhances Platelet-Leucocyte Interaction in Vitro. British Journal of Haematology, 100, 24-32. >https://doi.org/10.1046/j.1365-2141.1998.00526.x Ampofo, E., Müller, I., Dahmke, I.N., Eichler, H., Montenarh, M., Menger, M.D., et al. (2015) Role of Protein Kinase CK2 in the Dynamic Interaction of Platelets, Leukocytes and Endothelial Cells during Thrombus Formation. Thrombosis Research, 136, 996-1006. >https://doi.org/10.1016/j.thromres.2015.08.023 Jooss, N.J., De Simone, I., Provenzale, I., Fernández, D.I., Brouns, S.L.N., Farndale, R.W., et al. (2019) Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like Surfaces. International Journal of Molecular Sciences, 20, Article No. 2788. >https://doi.org/10.3390/ijms20112788 Yeaman, M.R. (2009) Platelets in Defense against Bacterial Pathogens. Cellular and Molecular Life Sciences, 67, 525-544. >https://doi.org/10.1007/s00018-009-0210-4 Gupta, S., Konradt, C., Corken, A., Ware, J., Nieswandt, B., Di Paola, J., et al. (2020) Hemostasis vs. Homeostasis: Platelets Are Essential for Preserving Vascular Barrier Function in the Absence of Injury or Inflammation. Proceedings of the National Academy of Sciences, 117, 24316-24325. >https://doi.org/10.1073/pnas.2007642117 Vargas, A. and Simon, S.I. (2022) Platelet Plugs Prevent Vascular Hemorrhage at Sites of Neutrophil Diapedesis. Journal of Investigative Dermatology, 142, 2558-2560. >https://doi.org/10.1016/j.jid.2022.06.009 Li, J., Angsantikul, P., Liu, W., Esteban‐Fernández de Ávila, B., Chang, X., Sandraz, E., et al. (2017) Biomimetic Platelet‐Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials, 30, Article ID: 1704800. >https://doi.org/10.1002/adma.201704800 Tang, S., Zhang, F., Gong, H., Wei, F., Zhuang, J., Karshalev, E., et al. (2020) Enzyme-powered Janus Platelet Cell Robots for Active and Targeted Drug Delivery. Science Robotics, 5, eaba6137. >https://doi.org/10.1126/scirobotics.aba6137 Huang, Y., Li, T., Gao, W., Wang, Q., Li, X., Mao, C., et al. (2020) Platelet-Derived Nanomotor Coated Balloon for Atherosclerosis Combination Therapy. Journal of Materials Chemistry B, 8, 5765-5775. >https://doi.org/10.1039/d0tb00789g Wan, M., Wang, Q., Wang, R., Wu, R., Li, T., Fang, D., et al. (2020) Platelet-Derived Porous Nanomotor for Thrombus Therapy. Science Advances, 6, eaaz9014. >https://doi.org/10.1126/sciadv.aaz9014 Springer, T.A. (1994) Traffic Signals for Lymphocyte Recirculation and Leukocyte Emigration: The Multistep Paradigm. Cell, 76, 301-314. >https://doi.org/10.1016/0092-8674(94)90337-9 Wang, D., Gao, C., Zhou, C., Lin, Z. and He, Q. (2020) Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research, 2020, Article ID: 3676954. >https://doi.org/10.34133/2020/3676954 Fang, R.H., Hu, C.J., Luk, B.T., Gao, W., Copp, J.A., Tai, Y., et al. (2014) Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Letters, 14, 2181-2188. >https://doi.org/10.1021/nl500618u Pereira-Silva, M., Santos, A.C., Conde, J., Hoskins, C., Concheiro, A., Alvarez-Lorenzo, C., et al. (2020) Biomimetic Cancer Cell Membrane-Coated Nanosystems as Next-Generation Cancer Therapies. Expert Opinion on Drug Delivery, 17, 1515-1518. >https://doi.org/10.1080/17425247.2020.1813109 Zhang, H., Li, Z., Wu, Z. and He, Q. (2019) Cancer Cell Membrane‐Camouflaged Micromotor. Advanced Therapeutics, 2, Article ID: 1900096. >https://doi.org/10.1002/adtp.201900096 Zhou, M., Xing, Y., Li, X., Du, X., Xu, T. and Zhang, X. (2020) Cancer Cell Membrane Camouflaged Semi-Yolk@Spiky-Shell Nanomotor for Enhanced Cell Adhesion and Synergistic Therapy. Small, 16, Article ID: 2003834. >https://doi.org/10.1002/smll.202003834 Cheng, L. and Hill, A.F. (2022) Therapeutically Harnessing Extracellular Vesicles. Nature Reviews Drug Discovery, 21, 379-399. >https://doi.org/10.1038/s41573-022-00410-w Liu, A., Wang, Q., Zhao, Z., Wu, R., Wang, M., Li, J., et al. (2021) Nitric Oxide Nanomotor Driving Exosomes-Loaded Microneedles for Achilles Tendinopathy Healing. ACS Nano, 15, 13339-13350. >https://doi.org/10.1021/acsnano.1c03177 Wang, Q., Li, T., Yang, J., Zhao, Z., Tan, K., Tang, S., et al. (2022) Engineered Exosomes with Independent Module/Cascading Function for Therapy of Parkinson’s Disease by Multistep Targeting and Multistage Intervention Method. Advanced Materials, 34, Article ID: 2201406. >https://doi.org/10.1002/adma.202201406 Tu, Y., Peng, F., Heuvelmans, J.M., Liu, S., Nolte, R.J.M. and Wilson, D.A. (2019) Motion Control of Polymeric Nanomotors Based on Host-Guest Interactions. Angewandte Chemie International Edition, 58, 8687-8691. >https://doi.org/10.1002/anie.201900917 Tu, Y., Peng, F., White, P.B. and Wilson, D.A. (2017) Redox‐Sensitive Stomatocyte Nanomotors: Destruction and Drug Release in the Presence of Glutathione. Angewandte Chemie International Edition, 56, 7620-7624. >https://doi.org/10.1002/anie.201703276 Tu, Y., Peng, F., André, A.A.M., Men, Y., Srinivas, M. and Wilson, D.A. (2017) Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS Nano, 11, 1957-1963. >https://doi.org/10.1021/acsnano.6b08079 Choi, H., Lee, G., Kim, K.S. and Hahn, S.K. (2018) Light-guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy. ACS Applied Materials&Interfaces, 10, 2338-2346. >https://doi.org/10.1021/acsami.7b16595 Zhang, P., Wu, G., Zhao, C., Zhou, L., Wang, X. and Wei, S. (2020) Magnetic Stomatocyte-Like Nanomotor as Photosensitizer Carrier for Photodynamic Therapy Based Cancer Treatment. Colloids and Surfaces B: Biointerfaces, 194, Article ID: 111204. >https://doi.org/10.1016/j.colsurfb.2020.111204
Baidu
map