在过去40年间,高价碘化学得到了迅猛发展,受到了广大有机合成工作者的广泛关注。高价碘试剂可以参与多种类型的氧化偶联
[6]
、官能团化
[7]
及重排
[8]
等多种类型的反应,其中,就高价碘试剂参与的氧化重排反应而言,类型众多,常见的反应包C-X重排(X = C, N, O),X-C重排(X = N, O, S, Si, I),I-X重排(X = O, N)以及克莱森重排。
Figure 6. Examples of C-arylated side products observed during the attempted oxidative dearomatization of phenolic cores with hypervalent iodine specie--图6. 尝试用高价碘对酚类核心进行氧化脱芳烃时观察到的芳基化副产物实例--
Figure 7. A general “iodonio-Claisen” framework for the iodanedirected coupling between enols or phenols and λ3-iodones--图7. 烯醇或苯酚与高价碘之间碘定向偶联的通用“碘–克莱森”框架--
References
Willgerodt, C. (1886) Zur Kenntniss thiophenhaltigen Benzols. Journal für Praktische Chemie, 33, 479-483. >https://doi.org/10.1002/prac.18860330144
Musher, J.I. (1969) The Chemistry of Hypervalent Molecules. Angewandte Chemie International Edition in English, 8, 54-68. >https://doi.org/10.1002/anie.196900541
Pimentel, G.C. (1951) The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. Journal of Chemical Physics, 19, Article 446. >https://doi.org/10.1063/1.1748245
Hach, R.J. and Rundle, R.E. (1951) The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. Journal of the American Chemical Society, 73, Article 4321.
Powell, W.H. (1984) Treatment of Variable Valence in Organic Nomenclature (Lambda Convention) (Recommendations 1983). Pure and Applied Chemistry, 56, 769-778. >https://doi.org/10.1351/pac198456060769
Yuan, Z., Zhao, T., Yu, T., Wang, J. and Wei, H. (2017) Hypervalent Iodine (III)-Mediated Oxidative Decarboxylation of β-Keto Acids. Asian Journal of Organic Chemistry, 6, 262-264. >https://doi.org/10.1002/ajoc.201600607
Banerjee, S. (2023) Gold and Hypervalent Iodine (III): Liaisons over a Decade for Electrophilic Functional Group Transfer Reactions. Organic&Biomolecular Chemistry, 21, Article 1629.
Zhang, B.B., Guo, B.Y. and Du, Y.F. (2021) Hypervalent Iodine Reagent-Mediated Reactions Involving Rearrangement Processes. New Journal of Chemistry, 45, Article 18815.
Inamoto, K., Saito, T., Katsuno, M., Sakamoto, T. and Hiroya, K. (2007) Palladium-Catalyzed C-H Activation/Intramolecular Amination Reaction: A New Route to 3-Aryl/Alkylindazoles. Organic Letters, 9, 2931-2934. >https://doi.org/10.1021/ol0711117
Wang, X., Lu, Y., Dai, H. and Yu, J. (2010) Pd (II)-Catalyzed Hydroxyl-Directed C-H Activation/C-O Cyclization: Expedient Construction of Dihydrobenzo Furans. Journal of the American Chemical Society, 132, 12203-12205. >https://doi.org/10.1021/ja105366u
Claraz, A. and Masson, G. (2018) Asymmetric Iodine Catalysis-Mediated Enantioselective Oxidative Transformations. Organic&Biomolecular Chemistry, 16, 5386-5402. >https://doi.org/10.1039/c8ob01378k
Berthiol, F. (2015) Reagent and Catalyst Design for Asymmetric Hypervalent Iodine Oxidations. Synthesis, 47, 587-603. >https://doi.org/10.1055/s-0034-1379892
Ghosh, S., Pradhan, S. and Chatterjee, I. (2018) A Survey of Chiral Hypervalent Iodine Reagents in Asymmetric Syn-thesis. Beilstein Journal of Organic Chemistry, 14, 1244-126. >https://doi.org/10.3762/bjoc.14.107
Zhang, X., Liu, M., Ge, H. and Zhang, Z. (2023) Second-Layer Chiral Environment-Induced Steric Hindrance Enables Catalyst Conformation Lockdown in Enantioselective Hypervalent Iodine Organocatalysis. ACS Catalysis, 13, 8273-8280. >https://doi.org/10.1021/acscatal.3c02018
Varvoglis, A. (1997) Hypervalent Iodine in Organic Synthesis. Angewandte Chemie International Edition, 109, 1850-1851.
Yoshimura, A. and Zhdankin, V.V. (2016) Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews, 116, 3328-3435. >https://doi.org/10.1021/acs.chemrev.5b00547
Silva, Jr. and Olofsson, B. (2011) Hypervalent Iodine Reagents in the Total Synthesis of Natural Products. Natural Product Reports, 28, Article 1722. >https://doi.org/10.1039/c1np00028d
Lee, K., Kim, D.Y. and Oh, D.Y. (1988) Reaction of Allyltrimethylsilane with an Aromatic Compound Using Hypervalent Organoiodine Compound: A New Allylation of Aromatic Compounds. Tetrahedron Letters, 29, 667-668. >https://doi.org/10.1016/s0040-4039(00)80178-1
Ochiai, M., Ito, T., Takaoka, Y. and Masaki, Y. (1991) Generation of Allenyliodinanes and Their Reductive Iodonio-Claisen Rearrangement. Journal of the American Chemical Society, 113, 1319-1323. >https://doi.org/10.1021/ja00004a037
Ochiai, M., Ito, T. and Masaki, Y. (1992) Ipso Selectivity in the Reductive Iodonio-Claisen Rearrangement of Allenyl (p-Methoxyaryl) Iodinanes. Journal of the Chemical Society, Chemical Communications, 1, 15-16. >https://doi.org/10.1039/c39920000015
Gately, D.A., Luther, T.A., Norton, J.R., Miller, M.M. and Anderson, O.P. (1992) Reaction of mu.-Oxobis[(trifluoromethanesulfonato)(phenyl)iodine(III)] with Group 14 Propargyl Derivatives and a Propargyl Ether. The Journal of Organic Chemistry, 57, 6496-6502.
Reddy, G.C. (1995) Hypervalent Iodine Oxidation Products of Papaverine and Its Microbial Metabolites. Tetrahedron Letters, 36, 1001-1002. >https://doi.org/10.1016/0040-4039(94)02426-c
Van De Water, R.W., Hoarau, C. and Pettus, T.R.R. (2003) Oxidative Dearomatization of Resorcinol Derivatives: Useful Conditions Leading to Valuable Cyclohexa-2,5-dienones. Tetrahedron Letters, 44, 5109-5113. >https://doi.org/10.1016/s0040-4039(03)01118-3
Zhu, J., Germain, A.R. and Porco, J.A. (2004) Synthesis of Azaphilones and Related Molecules by Employing Cycloisomerization of O-Alkynylbenzaldehydes. Angewandte Chemie International Edition, 43, 1239-1243. >https://doi.org/10.1002/anie.200353037
Li, Q., Lian, P., Tan, F., Zhu, G., Chen, C., Hao, Y., et al. (2020) Organocatalytic Enantioselective Construction of Heterocycle-Substituted Styrenes with Chiral Atropisomerism. Organic Letters, 22, 2448-2453. >https://doi.org/10.1021/acs.orglett.0c00659
Hori, M., Guo, J., Yanagi, T., Nogi, K., Sasamori, T. and Yorimitsu, H. (2018) Sigmatropic Rearrangements of Hypervalent-Iodine-Tethered Intermediates for the Synthesis of Biaryls. Angewandte Chemie, 130, 4753-4757. >https://doi.org/10.1002/ange.201801132
Huang, X., Zhang, Y., Zhang, C., Zhang, L., Xu, Y., Kong, L., et al. (2019) The Ortho-Difluoroalkylation of Aryliodanes with Enol Silyl Ethers: Rearrangement Enabled by a Fluorine Effect. Angewandte Chemie International Edition, 58, 5956-5961. >https://doi.org/10.1002/anie.201900745
Sousa e Silva, F.C., Van, N.T. and Wengryniuk, S.E. (2019) Direct C-H Α-Arylation of Enones with Ari(O
2Cr)
2 Reagents. Journal of the American Chemical Society, 142, 64-69. >https://doi.org/10.1021/jacs.9b11282
Zhao, W., Huang, X., Zhan, Y., Zhang, Q., Li, D., Zhang, Y., et al. (2019) Dearomative Dual Functionalization of Aryl Iodanes. Angewandte Chemie International Edition, 58, 17210-17214. >https://doi.org/10.1002/anie.201909019
Tian, J., Luo, F., Zhang, Q., Liang, Y., Li, D., Zhan, Y., et al. (2020) Asymmetric Iodonio-[3,3]-Sigmatropic Rearrangement to Access Chiral Α-Aryl Carbonyl Compounds. Journal of the American Chemical Society, 142, 6884-6890. >https://doi.org/10.1021/jacs.0c00783
Shafir, A. (2016) The Emergence of Sulfoxide and Iodonio-Based Redox Arylation as a Synthetic Tool. Tetrahedron Letters, 57, 2673-2682. >https://doi.org/10.1016/j.tetlet.2016.05.013
Grelier, G., Darses, B. and Dauban, P. (2018) Hypervalent Organoiodine Compounds: From Reagents to Valuable Building Blocks in Synthesis. Beilstein Journal of Organic Chemistry, 14, 1508-1528. >https://doi.org/10.3762/bjoc.14.128
Boelke, A., Finkbeiner, P. and Nachtsheim, B.J. (2018) Atom-Economical Group-Transfer Reactions with Hypervalent Iodine Compounds. Beilstein Journal of Organic Chemistry, 14, 1263-1280. >https://doi.org/10.3762/bjoc.14.108
Hyatt, I.F.D., Dave, L., David, N., Kaur, K., Medard, M. and Mowdawalla, C. (2019) Hypervalent Iodine Reactions Utilized in Carbon-Carbon Bond Formations. Organic&Biomolecular Chemistry, 17, 7822-7848. >https://doi.org/10.1039/c9ob01267b
Akai, S., Kawashita, N., Wada, Y., Satoh, H., Alinejad, A.H., Kakiguchi, K., et al. (2006) Regioselective, Nucleophilic Carbon-Carbon Bond Formation at the C4-Position of Indoles Initiated by the Aromatic Pummerer-Type Reaction. Tetrahedron Letters, 47, 1881-1884. >https://doi.org/10.1016/j.tetlet.2006.01.090
Zhdankin, V.V., Erickson, S.A. and Hanson, K.J. (1997) Preparation, X-Ray Crystal Structure, and Chemistry of ((arylsulfonyl)methyl) (phenyl)iodonium Triflates. Stable Alkyliodonium Salts. Journal of the American Chemical Society, 119, 4775-4776. >https://doi.org/10.1021/ja9707926
Sheng, J., Wang, Y., Su, X., He, R. and Chen, C. (2017) Copper-Catalyzed [2+2+2] Modular Synthesis of Multisubstituted Pyridines: Alkenylation of Nitriles with Vinyliodonium Salts. Angewandte Chemie International Edition, 56, 4824-4828. >https://doi.org/10.1002/anie.201700696
Rajkiewicz, A.A. and Kalek, M. (2018) N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts to Generate Α, β-Unsaturated Ketones. Organic Letters, 20, 1906-1909. >https://doi.org/10.1021/acs.orglett.8b00447
Menon, R.S., Biju, A.T. and Nair, V. (2016) Recent Advances in N-Heterocyclic Carbene (NHC)-Catalysed Benzoin Reactions. Beilstein Journal of Organic Chemistry, 12, 444-461. >https://doi.org/10.3762/bjoc.12.47
Flanigan, D.M., Romanov-Michailidis, F., White, N.A. and Rovis, T. (2015) Organocatalytic Reactions Enabled by NHeterocyclic Carbenes. Chemical Reviews, 115, 9307-9387. >https://doi.org/10.1021/acs.chemrev.5b00060
Moore, J.L. and Rovis, T. (2009) Carbene Catalysts. In: Topics in Current Chemistry, Springer, 77-144. >https://doi.org/10.1007/128_2008_18
Toh, Q.Y., McNally, A., Vera, S., Erdmann, N. and Gaunt, M.J. (2013) Organocatalytic C-H Bond Arylation of Aldehydes to Bis-Heteroaryl Ketones. Journal of the American Chemical Society, 135, 3772-3775. >https://doi.org/10.1021/ja400051d
Thiele, J. and Haakh, H. (1909) Abkömmlinge des Aethylens mit drei-und fünfwerthigem Jod. Justus Liebigs Annalen der Chemie, 369, 131-147. >https://doi.org/10.1002/jlac.19093690204
Papoutsis, I., Spyroudis, S., Varvoglis, A., Callies, J.A. and Zhdankin, V.V. (1997) Novel Trifluoroethyliodonium Salts from Cyclic Enaminones and Their Thermal Decomposition. Tetrahedron Letters, 38, 8401-8404. >https://doi.org/10.1016/s0040-4039(97)10232-5
Mészáros, Á., Székely, A., Stirling, A. and Novák, Z. (2018) Design of Trifluoroalkenyl Iodonium Salts for a Hypervalency-Aided Alkenylation-Cyclization Strategy: Metal-Free Construction of Aziridine Rings. Angewandte Chemie International Edition, 57, 6643-6647. >https://doi.org/10.1002/anie.201802347