Figure 16. Coupling reaction between aryl hypervalent iodine and tin nitrile--图16. 芳基高价碘与锡基腈的偶联反应--Figure 17. The coupling reaction process of hypervalent iodine and tin nitrile--图17. 高价碘与锡基腈的偶联反应过程--4. 总结
References
Wang, X., Wang, Y., Li, X., Yu, Z., Song, C. and Du, Y. (2021) Nitrile-Containing Pharmaceuticals: Target, Mechanism of Action, and Their SAR Studies. RSC Medicinal Chemistry, 12, 1650-1671. >https://doi.org/10.1039/d1md00131k
Wang, Y., Du, Y. and Huang, N. (2018) A Survey of the Role of Nitrile Groups in Protein-Ligand Interactions. Future Medicinal Chemistry, 10, 2713-2728. >https://doi.org/10.4155/fmc-2018-0252
Norsworthy, J.K., Talbert, R.E. and Hoagland, R.E. (1999) Chlorophyll Fluorescence Evaluation of Agrochemical Interactions with Propanil on Propanil-Resistant Barnyardgrass (Echinochloa crus-galli). Weed Science, 47, 13-19. >https://doi.org/10.1017/s0043174500090597
Smith, R.J. and Tugwell, N.P. (1975) Propanil-Carbofuran Interactions in Rice. Weed Science, 23, 176-178. >https://doi.org/10.1017/s0043174500052784
Liu, T., Xu, M., Bai, Z., Xu, X., Ren, D., Chen, W., et al. (2022) Toughening Effect of Poly (Arylene Ether Nitrile) on Phthalonitrile Resin and Fiber Reinforced Composites. Journal of Materials Science, 57, 18343-18355. >https://doi.org/10.1007/s10853-022-07780-x
Leader, H., Smejkal, R.M., Payne, C.S., Padilla, F.N., Doctor, B.P., Gordon, R.K., et al. (1989) Binary Antidotes for Organophosphate Poisoning: Aprophen Analogs That Are Both Antimuscarinics and Carbamates. Journal of Medicinal Chemistry, 32, 1522-1528. >https://doi.org/10.1021/jm00127a020
Trivedi, B.K., Holmes, A., Stoeber, T.L., Blankley, C.J., Roark, W.H., Picard, J.A., et al. (1993) Inhibitors of Acyl-CoA: Cholesterol Acyltransferase. 4. A Novel Series of Urea ACAT Inhibitors as Potential Hypocholesterolemic Agents. Journal of Medicinal Chemistry, 36, 3300-3307. >https://doi.org/10.1021/jm00074a011
Tiecco, M., Testaferri, L., Tingoli, M. and Bartoli, D. (1990) Iodine (III) Mediated Acetoxy-Lactonization of Unsaturated Nitriles. Tetrahedron, 46, 7139-7150. >https://doi.org/10.1016/s0040-4020(01)87896-0
Bush, E.J. and Jones, D.W. (1997) Control of Stereochemistry in an Intramolecular Diels-Alder Reaction by the Phenylsulfonyl Group; an Improved Synthesis of Pisiferol. Journal of the Chemical Society, Perkin Transactions 1, No. 23, 3531-3536. >https://doi.org/10.1039/a702761c
Bromidge, S.M., Brown, F., Cassidy, F., Clark, M.S.G., Dabbs, S., Hawkins, J., et al. (1992) A Novel and Selective Class of Azabicyclic Muscarinic Agonists Incorporating an N-Methoxy Imidoyl Halide or Nitrile Functionality. Bioorganic & Medicinal Chemistry Letters, 2, 791-796. >https://doi.org/10.1016/s0960-894x(00)80533-8
Dei, S., Romanelli, M.N., Scapecchi, S., Teodori, E., Chiarini, A. and Gualtieri, F. (1991) Verapamil Analog with Restricted Molecular Flexibility. Journal of Medicinal Chemistry, 34, 2219-2225. >https://doi.org/10.1021/jm00111a043
Mitani, K., Sakurai, S., Suzuki, T., Morikawa, K., Koshinaka, E., Kato, H., et al. (1988) Novel Phenoxyalkylamine Derivatives. V. Synthesis, α-Blocking Activity and Quantitative Structure-Activity Analysis of α-[(Phenoxyethyl-amino)propyy]-α-phenyyacetonitrile Derivatives. Chemical and Pharmaceutical Bulletin, 36, 4121-4135. >https://doi.org/10.1248/cpb.36.4121
Theodore, L.J. and Nelson, W.L. (1987) Stereospecific Synthesis of the Enantiomers of Verapamil and Gallopamil. The Journal of Organic Chemistry, 52, 1309-1315. >https://doi.org/10.1021/jo00383a026
Loupy, A., Philippon, N., Pigeon, P., Sansoulet, J. and Galons, H. (1990) Solid-Liquid Phase Transfer Catalysis without Solvent: Further Improvement in S
NAr Reactions. Synthetic Communications, 20, 2855-2864. >https://doi.org/10.1080/00397919008051499
Sommer, M.B., Begtrup, M. and Boegesoe, K.P. (1990) Displacement of Halogen of 2-Halo-Substituted Benzonitriles with Carbanions. Preparation of (2-Cyanoaryl)arylacetonitriles. The Journal of Organic Chemistry, 55, 4817-4821. >https://doi.org/10.1021/jo00303a011
Zhang, X., Yang, D. and Liu, Y. (1993) Effects of Electron Acceptors and Radical Scavengers on Nonchain Radical Nucleophilic Substitution Reactions. The Journal of Organic Chemistry, 58, 224-227. >https://doi.org/10.1021/jo00053a040
Makosza, M., Podraza, R. and Kwast, A. (1994) Does the Nucleophilic Substitution of Halogen in O-and P-Halonitrobenzenes with Cyanoacetate Carbanions Proceed via Single Electron Transfer and a Nonchain Radical Process? The Journal of Organic Chemistry, 59, 6796-6799. >https://doi.org/10.1021/jo00101a046
Plevey, R.G. and Sampson, P. (1987) The Synthesis of 3-(4-Aminotetrafluorophenyl)-3-Ethylpiperidine-2,6-Dione; a Fluorinated Derivative of Aminoglutethimide. Journal of the Chemical Society, Perkin Transactions 1, 2129-2136. >https://doi.org/10.1039/p19870002129
Caron, S., Vazquez, E. and Wojcik, J.M. (2000) Preparation of Tertiary Benzylic Nitriles from Aryl Fluorides. Journal of the American Chemical Society, 122, 712-713. >https://doi.org/10.1021/ja9933846
Okuro, K., Furuune, M., Miura, M. and Nomura, M. (1993) Copper-Catalyzed Reaction of Aryl Iodides with Active Methylene Compounds. The Journal of Organic Chemistry, 58, 7606-7607. >https://doi.org/10.1021/jo00078a053
Stauffer, S.R., Beare, N.A., Stambuli, J.P. and Hartwig, J.F. (2001) Palladium-Catalyzed Arylation of Ethyl Cyanoacetate. Fluorescence Resonance Energy Transfer as a Tool for Reaction Discovery. Journal of the American Chemical Society, 123, 4641-4642. >https://doi.org/10.1021/ja0157402
Beare, N.A. and Hartwig, J.F. (2001) Palladium-Catalyzed Arylation of Malonates and Cyanoesters Using Sterically Hindered Trialkyl-and Ferrocenyldialkylphosphine Ligands. The Journal of Organic Chemistry, 67, 541-555. >https://doi.org/10.1021/jo016226h
Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed Α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 36, 234-245. >https://doi.org/10.1021/ar0201106
Wu, L. and Hartwig, J.F. (2005) Mild Palladium-Catalyzed Selective Monoarylation of Nitriles. Journal of the American Chemical Society, 127, 15824-15832. >https://doi.org/10.1021/ja053027x
Velcicky, J., Soicke, A., Steiner, R. and Schmalz, H. (2011) Palladium-Catalyzed Cyanomethylation of Aryl Halides through Domino Suzuki Coupling-isoxazole Fragmentation. Journal of the American Chemical Society, 133, 6948-6951. >https://doi.org/10.1021/ja201743j
Shang, R., Ji, D., Chu, L., Fu, Y. and Liu, L. (2011) Synthesis of Α‐Aryl Nitriles through Palladium‐Catalyzed Decarboxylative Coupling of Cyanoacetate Salts with Aryl Halides and Triflates. Angewandte Chemie International Edition, 50, 4470-4474. >https://doi.org/10.1002/anie.201006763
Chen, Y., Xu, L., Jiang, Y. and Ma, D. (2021) Assembly of Α‐(hetero)aryl Nitriles via Copper‐Catalyzed Coupling Reactions with (Hetero)aryl Chlorides and Bromides. Angewandte Chemie, 133, 7158-7162. >https://doi.org/10.1002/ange.202014638
Wu, G., Deng, Y., Wu, C., Zhang, Y. and Wang, J. (2014) Synthesis of Α‐Aryl Esters and Nitriles: Deaminative Coupling of Α‐Aminoesters and Α‐Aminoacetonitriles with Arylboronic Acids. Angewandte Chemie International Edition, 53, 10510-10514. >https://doi.org/10.1002/anie.201406765
Ye, S., Wang, H., Liang, G., Hu, Z., Wan, K., Zhang, L., et al. (2024) Ortho-Cyanomethylation of Aryl Fluoroalkyl Sulfoxides via a Sulfonium-Claisen Rearrangement. Organic & Biomolecular Chemistry, 22, 1495-1499. >https://doi.org/10.1039/d3ob02102e
Culkin, D.A. and Hartwig, J.F. (2002) Synthesis, Characterization, and Reactivity of Arylpalladium Cyanoalkyl Complexes: Selection of Catalysts for the Α-Arylation of Nitriles. Journal of the American Chemical Society, 124, 9330-9331. >https://doi.org/10.1021/ja026584h
You, J. and Verkade, J.G. (2003) A General Method for the Direct Α‐Arylation of Nitriles with Aryl Chlorides. Angewandte Chemie International Edition, 42, 5051-5053. >https://doi.org/10.1002/anie.200351954
Tian, J., Luo, F., Zhang, C., Huang, X., Zhang, Y., Zhang, L., et al. (2018) Selective ortho C-H Cyanoalkylation of (Diacetoxyiodo)arenes through [3,3]‐Sigmatropic Rearrangement. Angewandte Chemie International Edition, 57, 9078-9082. >https://doi.org/10.1002/anie.201803455
Wang, J., Li, H. and Zhang, Y. (2013) Reaction of Diazo Compounds with Organoboron Compounds. Synthesis, 45, 3090-3098. >https://doi.org/10.1055/s-0033-1340041
Lee, S., Zhu, C., Huang, K., Bau, J.A., Jia, J., Yue, H., et al. (2023) Photoinduced Nickel-Catalyzed Demethylative Cyanation and Decarboxylative Cyanomethylation of Aryl Halides. ACS Catalysis, 13, 16279-16285. >https://doi.org/10.1021/acscatal.3c04745
Lindsay-Scott, P.J., Clarke, A. and Richardson, J. (2015) Two-Step Cyanomethylation Protocol: Convenient Access to Functionalized Aryl-and Heteroarylacetonitriles. Organic Letters, 17, 476-479. >https://doi.org/10.1021/ol503479g
Su, W., Raders, S., Verkade, J.G., Liao, X. and Hartwig, J.F. (2006) Pd‐Catalyzed Α‐Arylation of Trimethylsilyl Enol Ethers with Aryl Bromides and Chlorides: A Synergistic Effect of Two Metal Fluorides as Additives. Angewandte Chemie International Edition, 45, 5852-5855. >https://doi.org/10.1002/anie.200601887
Pasto, D.J. and Wojtkowski, P.W. (1970) Transfer Reactions Involving Boron. XXI Intermediates Formed in the Alkylation of Diazocompounds and Dimethylsulfonium Phenacylide via Organoboranes. Tetrahedron Letters, 11, 215-218. >https://doi.org/10.1016/0040-4039(70)80029-6
Tanaka, D. and Myers, A.G. (2004) Heck-Type Arylation of 2-Cycloalken-1-Ones with Arylpalladium Intermediates Formed by Decarboxylative Palladation and by Aryl Iodide Insertion. Organic Letters, 6, 433-436. >https://doi.org/10.1021/ol0363467
Gooßen, L.J., Rodríguez, N., Lange, P.P. and Linder, C. (2010) Decarboxylative Cross‐Coupling of Aryl Tosylates with Aromatic Carboxylate Salts. Angewandte Chemie International Edition, 49, 1111-1114. >https://doi.org/10.1002/anie.200905953