jocr Journal of Organic Chemistry Research 2330-5231 2330-524X beplay体育官网网页版等您来挑战! 10.12677/jocr.2024.124049 jocr-102492 Articles 化学与材料 通过重排实现羰基化合物α-芳基化 研究进展
Research Progress in the α-Arylation of Carbonyl Compounds by Rearrangement
张理明 浙江师范大学化学与材料科学学院,浙江 金华 12 12 2024 12 04 505 512 28 8 :2024 3 8 :2024 3 12 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 羰基化合物的α-芳基化是有机合成中非常重要的一类反应,在制药行业受到广泛关注。该类化合物的常规合成方法具有一定的局限性,例如使用化学计量的有毒试剂和苛刻的反应条件。另外,金属催化的羰基化合物的α-芳基化也得到了很大的发展。但反应过程中,需要使用价格昂贵的金属试剂。通过重排反应,也能实现羰基化合物的α-芳基化。反应不涉及有毒试剂和金属催化剂的使用,且底物适用范围广泛,反应条件温和。本文综述了重排反应在这一领域的最新进展。重点介绍了芳基高价碘,芳基四价硫,芳胺参与的[3,3]重排和磺酰胺参与的迁移重排在羰基化合物的α-芳基化方面的研究进展。
The α-arylation of carbonyl compounds is a very important reaction in organic synthesis, which has received wide attention in the pharmaceutical industry. The conventional synthesis methods of these compounds have some limitations, such as the use of stoichiometric toxic reagents and harsh reaction conditions. In addition, the metal-catalyzed α-arylation of carbonyl compounds has also been greatly developed. However, expensive metal reagents are needed in the reaction process. The rearrangement reaction can also realize the alpha-arylation of the carbonyl compound. The reaction does not involve the use of toxic reagents and metal catalysts, and has wide application range of substrates and mild reaction conditions. In this paper, the recent progress of rearrangement reactions in this field is reviewed. In this paper, the research progress of α-arylation of carbonyl compounds by [3,3] rearrangement involving aryl hypervalent iodine, aryl tetravalent sulfur, aromatic amine and migration rearrangement involving sulfonamide is emphatically introduced.
羰基化合物,芳基化,重排反应
Carbonyl Compound
Arylation Rearrangement Reaction
1. 引言

羰基化合物的α-芳基化受到合成界的广泛关注。该领域的大多数进展依赖于过渡金属催化的烯醇化物(或其等价物)与芳基卤化物、拟卤化物或更具反应性的试剂的偶联 [1] - [4] 。所开发的不含贵金属的方法包括对缺电子芳烃的亲核加成 [5] [6] ,芳基卤化物的亲核取代 [7] [8] ,烯醇盐阴离子(或等价物)与高活性的亲电芳香物质如IIII [9] [10] ,Bi [11] [12] ,Pb [13] - [16] 以及苯炔 [17] - [21] 的芳基化,以及有机催化转化 [22] 。此外,研究发现,通过重排反应也能实现羰基化合物的α-芳基化( 图1 )。本文将概述经由芳基高价碘、芳基亚砜、芳胺、磺酰胺与羰基化合物通过重排反应在羰基α位引入芳环的研究进展。

Figure 1. General strategies for α-arylation of carbonyl compounds--图1. 羰基化合物α-芳基化的一般策略--
2. 芳基高价碘与羰基化合物的重排反应

1963年,Beringer等人报道了不含金属的α-芳基化 [23] 。二芳基高价碘(例如(Ph2I)Cl)具有将芳基配体转移到烯醇化物的能力。最近的研究表明,C-和O-碘鎓烯醇盐中间体可以分别通过[1,2]或[2,3]迁移重排得到产物 [24] ( 图2 ),这种方法,作为交叉偶联的补充,已经变得非常重要,反过来又促进了对二芳基高价碘的进一步研究。尽管该方法具有吸引力,但两个芳基中的一个必须以ArI形式被挤出。

Figure 2. Diaryl hypervalent iodine involved in migration rearrangement--图2. 二芳基高价碘参与的迁移重排--

2014年,Shafir课题组研究发现ArI(O2CCF3)2试剂可以用于实现β-二羰基和α-氰基酮的α-芳基化 [25] ( 图3 )。这种形式上的C-H官能化反应被认为是通过碘鎓烯醇化物的[3,3]重排进行的。研究表明,在这种情况下,需要三氟乙酸盐形式的高价碘,用类似的PhI(OAC)2/AcOH体系得到的结果很差。在酮底物上存在活化基团,例如2-氰基取代基,证明是重要的,因为没有观察到与母体环己酮的偶联( 图3 )。该反应在实现α-芳基化的同时,芳环上的碘原子还能得以保留。在更普遍的意义上,碘基Claisen前体可逆形成的概念,如这里所示的烯醇盐,可能为开发一系列新的合成方法打开大门。

Figure 3. α-Arylation of β-dicarbonyl and α-cyanoketon--图3. β-二羰基和α-氰基酮的α-芳基化--

随后,该课题组将α-芳基化方法扩展到环状1,3-二酮 [26] 。尽管母体环己烷-1,3-二酮的反应失败,但使用其α-Me衍生物使得该偶联以65%的产率进行( 图4 )。这种产生季碳中心而不是叔碳中心的能力是合理的,因为未取代的基间CH2基团倾向于形成碘叶立德,如ArI = C(COR)2

Figure 4. α-Arylation of cyclic 1,3-diketones--图4. 环状1,3-二酮的α-芳基化--
3. 芳基亚砜与羰基化合物的重排反应

2011年,Maulide课题组报道了一种新的亚砜介导的羰基化合物的α-芳基化反应 [27] 。该反应在非常温和的条件下进行,并且不需要任何过渡金属促进剂或催化剂。该过程的一个显著特征是在室温转化中使用简单且容易获得的试剂即可。作者为此提出了一种有趣的σ迁移重排机制( 图5 )。用TFAA处理亚砜1会形成活化的中间体2。β-酮酯亲核试剂3烯醇化后,亲核攻击发生在硫上,会形成中间体4。然后,电荷加速的[3,3] σ迁移重排应将4转化为脱芳构化中间体5。伴随着三氟乙酸酯的排出,通过质子损失的再芳构化会导致产物6的形成。

研究发现,除了六元环状β-酮酯外,带有不同酯基的五元环状底物在相似的条件下也能够以非常好的产率提供相应的芳基化产物。芳环上的吸电子取代基的存在对该过程产生了积极的影响,并以较高的产率得到了相应的产物。此外,该方法还表现出高水平的非对映选择性。

Figure 5. Mechanism of [3,3]-sigmatropic rearrangement of sulfoxide and β-keto ester--图5. 亚砜与β-酮酯的[3,3]-sigmatropic重排机制--

2014年,依赖于亲电重排策略,Maulide课题组研究了芳基亚砜和酰胺的[3,3]-sigmatropic重排反应,由此开发了一种用于未活化的简单酰胺的直接α-芳基化的新方法 [28] 。在简单酰胺的α-位上的芳基化仍然是一个相当大的合成挑战,现有的分子间方法都依赖于强碱来促进酰胺通过相应的烯醇化物实现α-芳基化 [29] - [35] 。考虑到酯和酮的α-质子比相应的酰胺具有更低的pKa,这些官能团的存在限制了强碱依赖性方法的使用。然而,通过该课题组提出的重排策略,可以解决上述问题。研究表明,即使在酯和烷基酮存在下,芳基也可以区域选择性地引入到酰胺中。此外,作者通过机理研究揭示了关键的反应中间体7 ( 图6 ),并强调了转化过程中非常微妙的碱效应对该反应的显著影响。

Figure 6. [3,3]-sigmatropic rearrangements of sulfoxides and amides for α-arylation of amides--图6. 亚砜和酰胺的[3,3]-sigmatropic重排用于酰胺的α-芳基化--
4. 芳胺与羰基化合物的重排反应

2017年,Maulide课题组报道了易得的异羟肟酸作为酰胺的化学选择性(邻氨基)芳基化试剂的应用 [36] 。该反应在无金属的温和条件下进行,显示出非常宽的范围,并且构成了苯胺与羰基衍生物的无金属连接的直接入口( 图7 )。反应具有高度的化学选择性,即使在酯、酮或醛官能团的存在下,也总是对酰胺组分进行芳基化。由于苯胺在最终产物中的存在,氨基芳基化在合成中提供了更多的机会。

Figure 7. α-Arylation of carbonyl compounds via rearrangement involving aromatic amines--图7. 芳胺参与的重排致羰基化合物的α-芳基化--
5. 磺酰胺参与的迁移重排反应

1954年至1964年间,Dohmori及其同事发表了一系列关于在碱性条件下对N-磺酰胺进行1,4-芳基迁移重排的文章 [37] 。当N-芳基磺酰胺8或9 (在酰胺上和迁移的芳环上带有吸电子基团)用氢氧化钠处理时,分别得到相应的N-芳基酰胺10或11 (方案6)。这些α-芳基酰胺通常在酸性条件下经逆克莱森反应和/或水解/脱羧程序后转化为相应的羧酸12 ( 图8 )。酰胺上乙酰基或氰基的存在促进了脱质子化步骤,得到关键的烯醇化物中间体,然后其经历脱磺酰化的1,4-芳基迁移重排。只有贫电子(杂)芳烃如硝基苯或吡啶N-氧化物能够迁移并产生相应的N-芳基酰胺。带有较弱的吸电子取代基如氰基的芳基仅产生非重排的水解产物。作者研究了该反应的机理,并提出了脱磺酰基的1,4-芳基迁移。他们还利用竞争实验证明了该反应是一个分子内过程。

Figure 8. Desulfonyl 1,4-shift rearrangement of N-sulfonamide under basic condition--图8. N-磺酰胺碱性条件下脱磺酰基1,4-迁移重排-- Figure 9. Synthesis of α,α’-diarylamides by desulfonylation of acyl chloride and 1,4-migration rearrangement--图9. 酰氯脱磺酰化1,4-迁移重排合成α,α’-二芳基酰胺--

2019年,Greaney及其同事发表了通过脱磺酰化1,4-芳基迁移重排合成α,α’-二芳基酰胺 [38] 。关键中间体是通过在碱性条件下由相应的酰氯原位生成的乙烯酮上加入磺酰胺而产生的。得到的烯醇化物然后进行重排,以中等至优异的产率提供相应的α,α’-二芳基酰胺。作者假设酰氯13将通过E1CB与碱反应生成乙烯酮15。在该乙烯酮上添加磺酰胺14将导致烯醇化物16,其将通过SNAR机理在SO2-芳基上反应以产生螺环中间体17。17的脱磺酰化将导致去质子化的酰胺18,其在质子化后将得到α,α’-二芳基酰胺19 ( 图9 )。值得一提的是,使用iPrNET2代替氢氧化钠仅导致由烯醇化物16的质子化产生的缩合产物。在所测试的碱中,氢氧化钠是唯一能够促进重排的碱。这是令人惊讶的,因为通常用于原位产生乙烯酮的大多数碱是胺或吡啶。

2019年,Cheng课题组报道了一种在无过渡金属的条件下,从炔酮和磺酰胺制备1,2,3-三取代-4-喹诺酮的方法 [39] 。该转化被理解为通过串联的迈克尔加成/Smiles重排/N-芳基化反应进行。在无过渡金属的条件下,通过一个N-S、一个C-S和一个C-X (X = F, Cl, Br, O)键的断裂,一步完成了一个C-C键和两个C-N键的构建( 图10 )。该方案与各种官能团的兼容性也在文章中得到证实。

该课题组进一步探索了N-芳基取代的底物。一系列N-芳基取代的磺酰胺被应用于该转化中,以中等到优异的产率得到所需的产物。各种有价值的官能团,如卤素、甲基、甲氧基和三氟甲基在N-芳环的对位、间位和邻位是可以兼容的。还观察到N-苯环的电子性质对反应活性的影响很小,并且具有吸电子基团的底物的产率低于具有供电子基团的底物。最后,该反应不适用于4-硝基苯磺酰胺和4-硝基苯磺酸。

Figure 10. Preparation of 1,2,3-trisubstituted-4-quinolones from alkynones and sulfonamides by Smiles rearrangement--图10. 通过Smiles重排从炔酮和磺酰胺制备1,2,3-三取代-4-喹诺酮--

2024年,Maulide课题组报道了磺酰基(丙烯酰基)-酰亚胺的多米诺双官能化以形成β-取代的α-芳基酰胺 [40] 。这一转变涉及1,4-加成,随后是由SO2释放的熵驱动的Truce-Smiles重排过程( 图11 )。该课题组使用了广泛的基于碳和杂原子的亲核试剂和磺酰亚胺,均允许快速获得高度官能化的酰胺。此外,还报道了电子中性芳烃的独特和前所未有的插烯迁移,并开发了以丙烯酸为原料合成β-酰胺基酰胺的一锅法工艺。

Figure 11. Truce-Smiles rearrangement to α-arylamid--图11. Truce-Smiles重排制备α-芳基酰胺--
6. 总结

羰基化合物的α-芳基化是有机合成中非常重要的一类合成方法,该类物质具有广泛的应用环境,引起了化学工作者的强烈兴趣。其中,通过重排反应来构建α-芳基化的羰基化合物具有其他方法所不具备的优势,如反应条件温和,不涉及高毒性试剂,昂贵金属试剂的使用,底物适用范围广泛等。在前面的研究基础上,如何构建新的重排反应模型,实现更加广泛易得的α-芳基的羰基化合物的合成已经成为一个迫切需要解决的科学问题。

References Johansson, C.C.C. and Colacot, T.J. (2010) Metallkatalysierte α‐Arylierungen von Carbonylen und verwandten Molekülen: aktuelle Trends bei der C‐C‐Kupplung über C‐H‐Funktionalisierung. Angewandte Chemie, 122, 686-718. >https://doi.org/10.1002/ange.200903424 Bellina, F. and Rossi, R. (2009) Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp 3-Hybridized C-H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chemical Reviews, 110, 1082-1146. >https://doi.org/10.1021/cr9000836 Ma, D. and Cai, Q. (2008) Copper/Amino Acid Catalyzed Cross-Couplings of Aryl and Vinyl Halides with Nucleophiles. Accounts of Chemical Research, 41, 1450-1460. >https://doi.org/10.1021/ar8000298 Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 36, 234-245. >https://doi.org/10.1021/ar0201106 Mąkosza, M. (2010) Nucleophilic Substitution of Hydrogen in Electron-Deficient Arenes, a General Process of Great Practical Value. Chemical Society Reviews, 39, 2855-2868. >https://doi.org/10.1039/b822559c Xu, Q., Gao, H., Yousufuddin, M., Ess, D.H. and Kürti, L. (2013) Aerobic, Transition-Metal-Free, Direct, and Regiospecific Mono-α-Arylation of Ketones: Synthesis and Mechanism by DFT Calculations. Journal of the American Chemical Society, 135, 14048-14051. >https://doi.org/10.1021/ja4074563 Thompson, A.D. and Huestis, M.P. (2012) Cyanide Anion as a Leaving Group in Nucleophilic Aromatic Substitution: Synthesis of Quaternary Centers at Azine Heterocycles. The Journal of Organic Chemistry, 78, 762-769. >https://doi.org/10.1021/jo302307y Beyer, A., Buendia, J. and Bolm, C. (2012) Transition-Metal-Free Synthesis of Oxindoles by Potassium tert-Butoxide-Promoted Intramolecular α-Arylation. Organic Letters, 14, 3948-3951. >https://doi.org/10.1021/ol301704z Merritt, E.A. and Olofsson, B. (2009) Diaryliodoniumsalze-aus dem Nichts ins Rampenlicht. Angewandte Chemie, 121, 9214-9234. >https://doi.org/10.1002/ange.200904689 Zhdankin, V.V. and Stang, P.J. (2008) Chemistry of Polyvalent Iodine. Chemical Reviews, 108, 5299-5358. >https://doi.org/10.1021/cr800332c Elliott, G.I. and Konopelski, J.P. (2001) Arylation with Organolead and Organobismuth Reagents. Tetrahedron, 57, 5683-5705. >https://doi.org/10.1016/s0040-4020(01)00385-4 Barton, D.H.R. and Finet, J. (1987) Bismuth(V) Reagents in Organic Synthesis. Pure and Applied Chemistry, 59, 937-946. >https://doi.org/10.1351/pac198759080937 Xia, J., Brown, L.E. and Konopelski, J.P. (2007) Welwistatin Support Studies: Expansion and Limitation of Aryllead(IV) Coupling Reactions. The Journal of Organic Chemistry, 72, 6885-6890. >https://doi.org/10.1021/jo071156l Elliott, G.I., Konopelski, J.P. and Olmstead, M.M. (1999) Diastereoselectivity in the Formation of Quaternary Centers with Aryllead(IV) Tricarboxylates. Organic Letters, 1, 1867-1870. >https://doi.org/10.1021/ol991143x Morgan, J., Pinhey, J.T. and Rowe, B.A. (1997) α-Arylation of Ketones by Aryllead Triacetates. Effect of Methyl and Phenyl Substitution at the Α Position. Journal of the Chemical Society, Perkin Transactions 1, 1, 1005-1008. >https://doi.org/10.1039/a607543f Orito, K., Sasaki, T. and Suginome, H. (1995) Photoinduced Molecular Transformations. 158. A Total Synthesis of (.+-.)-Methyl Piperitol: An Unsymmetrically Substituted 2,6-Diaryl-3,7-Dioxabicyclo[3.3.0]Octane Lignan. The Journal of Organic Chemistry, 60, 6208-6210. >https://doi.org/10.1021/jo00124a045 Dhokale, R.A., Thakare, P.R. and Mhaske, S.B. (2012) Transition-Metal-Free C-Arylation at Room Temperature by Arynes. Organic Letters, 14, 3994-3997. >https://doi.org/10.1021/ol301768r Lennox, A.J.J. (2018) Meisenheimer Complexes in S NAr Reactions: Intermediates or Transition States? Angewandte Chemie International Edition, 57, 14686-14688. >https://doi.org/10.1002/anie.201809606 Tadross, P.M., Gilmore, C.D., Bugga, P., Virgil, S.C. and Stoltz, B.M. (2010) Regioselective Reactions of Highly Substituted Arynes. Organic Letters, 12, 1224-1227. >https://doi.org/10.1021/ol1000796 Liu, Y., Liang, Y., Pi, S. and Li, J. (2009) Selective Synthesis of o-Acylbenzylphosphonates by Insertion Reactions of Arynes into Β-Ketophosphonates. The Journal of Organic Chemistry, 74, 5691-5694. >https://doi.org/10.1021/jo900847u Tambar, U.K. and Stoltz, B.M. (2005) The Direct Acyl-Alkylation of Arynes. Journal of the American Chemical Society, 127, 5340-5341. >https://doi.org/10.1021/ja050859m Jensen, K.L., Franke, P.T., Nielsen, L.T., Daasbjerg, K. and Jørgensen, K.A. (2009) Anodic Oxidation and Organocatalysis: Direct Regio‐ and Stereoselective Access to Meta‐Substituted Anilines by α‐Arylation of Aldehydes. Angewandte Chemie, 122, 133-137. >https://doi.org/10.1002/ange.200904754 Beringer, F.M. and Forgione, P.S. (1963) Diaryliodonium Salts. XVIII. the Phenylation of Esters in T-Butyl Alcohol 1-3. The Journal of Organic Chemistry, 28, 714-717. >https://doi.org/10.1021/jo01038a028 Norrby, P., Petersen, T.B., Bielawski, M. and Olofsson, B. (2010) α‐Arylation by Rearrangement: On the Reaction of Enolates with Diaryliodonium Salts. Chemistry—A European Journal, 16, 8251-8254. >https://doi.org/10.1002/chem.201001110 Jia, Z., Gálvez, E., Sebastián, R.M., Pleixats, R., Álvarez‐Larena, Á., Martin, E., et al. (2014) An Alternative to the Classical α‐Arylation: The Transfer of an Intact 2‐Iodoaryl from Ari(O 2CCF 3) 2. Angewandte Chemie International Edition, 53, 11298-11301. >https://doi.org/10.1002/anie.201405982 Wu, Y., Arenas, I., Broomfield, L.M., Martin, E. and Shafir, A. (2015) Hypervalent Activation as a Key Step for Dehydrogenative ortho C-C Coupling of Iodoarenes. Chemistry—A European Journal, 21, 18779-18784. >https://doi.org/10.1002/chem.201503987 Huang, X. and Maulide, N. (2011) Sulfoxide-Mediated α-Arylation of Carbonyl Compounds. Journal of the American Chemical Society, 133, 8510-8513. >https://doi.org/10.1021/ja2031882 Peng, B., Geerdink, D., Farès, C. and Maulide, N. (2014) Chemoselective Intermolecular α‐Arylation of Amides. Angewandte Chemie International Edition, 53, 5462-5466. >https://doi.org/10.1002/anie.201402229 Bhunia, S., Ghosh, S., Dey, D. and Bisai, A. (2013) DDQ-Mediated Direct Intramolecular-Dehydrogenative-Coupling (IDC): Expeditious Approach to the Tetracyclic Core of Ergot Alkaloids. Organic Letters, 15, 2426-2429. >https://doi.org/10.1021/ol400899e Stewart, J.D., Fields, S.C., Kochhar, K.S. and Pinnick, H.W. (1987) α-Arylation of Pyrrolidinones. The Journal of Organic Chemistry, 52, 2110-2113. >https://doi.org/10.1021/jo00386a045 Rossi, R.A. and Alonso, R.A. (1980) Photostimulated Reactions of N, N-Disubstituted Amide Enolate Anions with Haloarenes by the SRN1 Mechanism in Liquid Ammonia. The Journal of Organic Chemistry, 45, 1239-1241. >https://doi.org/10.1021/jo01295a015 Ghosh, S., De, S., Kakde, B.N., Bhunia, S., Adhikary, A. and Bisai, A. (2012) Intramolecular Dehydrogenative Coupling of Sp 2 C-H and Sp 3 C-H Bonds: An Expeditious Route to 2-Oxindoles. Organic Letters, 14, 5864-5867. >https://doi.org/10.1021/ol302767w Jia, Y. and Kündig, E.P. (2009) Oxindole Synthesis by Direct Coupling of C sp 2-H and C sp 2-H Centers. Angewandte Chemie International Edition, 48, 1636-1639. >https://doi.org/10.1002/anie.200805652 Perry, A. and Taylor, R.J.K. (2009) Oxindole Synthesis by Direct C-H, Ar-H Coupling. Chemical Communications, 2009, 3249-3251. >https://doi.org/10.1039/b903516h Hama, T., Liu, X., Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Esters and Amides under More Neutral Conditions. Journal of the American Chemical Society, 125, 11176-11177. >https://doi.org/10.1021/ja036792p Shaaban, S., Tona, V., Peng, B. and Maulide, N. (2017) Hydroxamic Acids as Chemoselective (Ortho‐Amino)Arylation Reagents via Sigmatropic Rearrangement. Angewandte Chemie International Edition, 56, 10938-10941. >https://doi.org/10.1002/anie.201703667 Johnson, S., Kovács, E. and Greaney, M.F. (1964) Arylation and Alkenylation of Activated Alkyl Halides Using Sulfonamides. Chemical Communications, 56, 3222-3224. >https://doi.org/10.1039/D0CC00220H Barlow, H.L., Rabet, P.T.G., Durie, A., Evans, T. and Greaney, M.F. (2019) Arylation Using Sulfonamides: Phenylacetamide Synthesis through Tandem Acylation-Smiles Rearrangement. Organic Letters, 21, 9033-9035. >https://doi.org/10.1021/acs.orglett.9b03429 Liu, J., Ba, D., Lv, W., Chen, Y., Zhao, Z. and Cheng, G. (2019) Base-Promoted Michael Addition/Smiles Rearrangement/N-Arylation Cascade: One-Step Synthesis of 1,2,3-Trisubstituted 4-Quinolones from Ynones and Sulfonamides. Advanced Synthesis and Catalysis, 362, 213-223. Zhang, H., Xiao, Y., Lemmerer, M., Bortolato, T. and Maulide, N. (2024) Domino Conjugate Addition-1,4-Aryl Migration for the Synthesis of α, β-Difunctionalized Amides. JACS Au, 4, 2456-2461. >https://doi.org/10.1021/jacsau.4c00378
Baidu
map