Figure 6. [3,3]-sigmatropic rearrangements of sulfoxides and amides for α-arylation of amides--图6. 亚砜和酰胺的[3,3]-sigmatropic重排用于酰胺的α-芳基化--4. 芳胺与羰基化合物的重排反应
Figure 8. Desulfonyl 1,4-shift rearrangement of N-sulfonamide under basic condition--图8. N-磺酰胺碱性条件下脱磺酰基1,4-迁移重排--Figure 9. Synthesis of α,α’-diarylamides by desulfonylation of acyl chloride and 1,4-migration rearrangement--图9. 酰氯脱磺酰化1,4-迁移重排合成α,α’-二芳基酰胺--
Figure 10. Preparation of 1,2,3-trisubstituted-4-quinolones from alkynones and sulfonamides by Smiles rearrangement--图10. 通过Smiles重排从炔酮和磺酰胺制备1,2,3-三取代-4-喹诺酮--
References
Johansson, C.C.C. and Colacot, T.J. (2010) Metallkatalysierte α‐Arylierungen von Carbonylen und verwandten Molekülen: aktuelle Trends bei der C‐C‐Kupplung über C‐H‐Funktionalisierung. Angewandte Chemie, 122, 686-718. >https://doi.org/10.1002/ange.200903424
Bellina, F. and Rossi, R. (2009) Transition Metal-Catalyzed Direct Arylation of Substrates with Activated sp
3-Hybridized C-H Bonds and Some of Their Synthetic Equivalents with Aryl Halides and Pseudohalides. Chemical Reviews, 110, 1082-1146. >https://doi.org/10.1021/cr9000836
Ma, D. and Cai, Q. (2008) Copper/Amino Acid Catalyzed Cross-Couplings of Aryl and Vinyl Halides with Nucleophiles. Accounts of Chemical Research, 41, 1450-1460. >https://doi.org/10.1021/ar8000298
Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 36, 234-245. >https://doi.org/10.1021/ar0201106
Mąkosza, M. (2010) Nucleophilic Substitution of Hydrogen in Electron-Deficient Arenes, a General Process of Great Practical Value. Chemical Society Reviews, 39, 2855-2868. >https://doi.org/10.1039/b822559c
Xu, Q., Gao, H., Yousufuddin, M., Ess, D.H. and Kürti, L. (2013) Aerobic, Transition-Metal-Free, Direct, and Regiospecific Mono-α-Arylation of Ketones: Synthesis and Mechanism by DFT Calculations. Journal of the American Chemical Society, 135, 14048-14051. >https://doi.org/10.1021/ja4074563
Thompson, A.D. and Huestis, M.P. (2012) Cyanide Anion as a Leaving Group in Nucleophilic Aromatic Substitution: Synthesis of Quaternary Centers at Azine Heterocycles. The Journal of Organic Chemistry, 78, 762-769. >https://doi.org/10.1021/jo302307y
Beyer, A., Buendia, J. and Bolm, C. (2012) Transition-Metal-Free Synthesis of Oxindoles by Potassium tert-Butoxide-Promoted Intramolecular α-Arylation. Organic Letters, 14, 3948-3951. >https://doi.org/10.1021/ol301704z
Merritt, E.A. and Olofsson, B. (2009) Diaryliodoniumsalze-aus dem Nichts ins Rampenlicht. Angewandte Chemie, 121, 9214-9234. >https://doi.org/10.1002/ange.200904689
Zhdankin, V.V. and Stang, P.J. (2008) Chemistry of Polyvalent Iodine. Chemical Reviews, 108, 5299-5358. >https://doi.org/10.1021/cr800332c
Elliott, G.I. and Konopelski, J.P. (2001) Arylation with Organolead and Organobismuth Reagents. Tetrahedron, 57, 5683-5705. >https://doi.org/10.1016/s0040-4020(01)00385-4
Barton, D.H.R. and Finet, J. (1987) Bismuth(V) Reagents in Organic Synthesis. Pure and Applied Chemistry, 59, 937-946. >https://doi.org/10.1351/pac198759080937
Xia, J., Brown, L.E. and Konopelski, J.P. (2007) Welwistatin Support Studies: Expansion and Limitation of Aryllead(IV) Coupling Reactions. The Journal of Organic Chemistry, 72, 6885-6890. >https://doi.org/10.1021/jo071156l
Elliott, G.I., Konopelski, J.P. and Olmstead, M.M. (1999) Diastereoselectivity in the Formation of Quaternary Centers with Aryllead(IV) Tricarboxylates. Organic Letters, 1, 1867-1870. >https://doi.org/10.1021/ol991143x
Morgan, J., Pinhey, J.T. and Rowe, B.A. (1997) α-Arylation of Ketones by Aryllead Triacetates. Effect of Methyl and Phenyl Substitution at the Α Position. Journal of the Chemical Society, Perkin Transactions 1, 1, 1005-1008. >https://doi.org/10.1039/a607543f
Orito, K., Sasaki, T. and Suginome, H. (1995) Photoinduced Molecular Transformations. 158. A Total Synthesis of (.+-.)-Methyl Piperitol: An Unsymmetrically Substituted 2,6-Diaryl-3,7-Dioxabicyclo[3.3.0]Octane Lignan. The Journal of Organic Chemistry, 60, 6208-6210. >https://doi.org/10.1021/jo00124a045
Dhokale, R.A., Thakare, P.R. and Mhaske, S.B. (2012) Transition-Metal-Free C-Arylation at Room Temperature by Arynes. Organic Letters, 14, 3994-3997. >https://doi.org/10.1021/ol301768r
Lennox, A.J.J. (2018) Meisenheimer Complexes in S
NAr Reactions: Intermediates or Transition States? Angewandte Chemie International Edition, 57, 14686-14688. >https://doi.org/10.1002/anie.201809606
Tadross, P.M., Gilmore, C.D., Bugga, P., Virgil, S.C. and Stoltz, B.M. (2010) Regioselective Reactions of Highly Substituted Arynes. Organic Letters, 12, 1224-1227. >https://doi.org/10.1021/ol1000796
Liu, Y., Liang, Y., Pi, S. and Li, J. (2009) Selective Synthesis of o-Acylbenzylphosphonates by Insertion Reactions of Arynes into Β-Ketophosphonates. The Journal of Organic Chemistry, 74, 5691-5694. >https://doi.org/10.1021/jo900847u
Tambar, U.K. and Stoltz, B.M. (2005) The Direct Acyl-Alkylation of Arynes. Journal of the American Chemical Society, 127, 5340-5341. >https://doi.org/10.1021/ja050859m
Jensen, K.L., Franke, P.T., Nielsen, L.T., Daasbjerg, K. and Jørgensen, K.A. (2009) Anodic Oxidation and Organocatalysis: Direct Regio‐ and Stereoselective Access to Meta‐Substituted Anilines by α‐Arylation of Aldehydes. Angewandte Chemie, 122, 133-137. >https://doi.org/10.1002/ange.200904754
Beringer, F.M. and Forgione, P.S. (1963) Diaryliodonium Salts. XVIII. the Phenylation of Esters in T-Butyl Alcohol
1-3. The Journal of Organic Chemistry, 28, 714-717. >https://doi.org/10.1021/jo01038a028
Norrby, P., Petersen, T.B., Bielawski, M. and Olofsson, B. (2010) α‐Arylation by Rearrangement: On the Reaction of Enolates with Diaryliodonium Salts. Chemistry—A European Journal, 16, 8251-8254. >https://doi.org/10.1002/chem.201001110
Jia, Z., Gálvez, E., Sebastián, R.M., Pleixats, R., Álvarez‐Larena, Á., Martin, E., et al. (2014) An Alternative to the Classical α‐Arylation: The Transfer of an Intact 2‐Iodoaryl from Ari(O
2CCF
3)
2. Angewandte Chemie International Edition, 53, 11298-11301. >https://doi.org/10.1002/anie.201405982
Wu, Y., Arenas, I., Broomfield, L.M., Martin, E. and Shafir, A. (2015) Hypervalent Activation as a Key Step for Dehydrogenative ortho C-C Coupling of Iodoarenes. Chemistry—A European Journal, 21, 18779-18784. >https://doi.org/10.1002/chem.201503987
Huang, X. and Maulide, N. (2011) Sulfoxide-Mediated α-Arylation of Carbonyl Compounds. Journal of the American Chemical Society, 133, 8510-8513. >https://doi.org/10.1021/ja2031882
Peng, B., Geerdink, D., Farès, C. and Maulide, N. (2014) Chemoselective Intermolecular α‐Arylation of Amides. Angewandte Chemie International Edition, 53, 5462-5466. >https://doi.org/10.1002/anie.201402229
Bhunia, S., Ghosh, S., Dey, D. and Bisai, A. (2013) DDQ-Mediated Direct Intramolecular-Dehydrogenative-Coupling (IDC): Expeditious Approach to the Tetracyclic Core of Ergot Alkaloids. Organic Letters, 15, 2426-2429. >https://doi.org/10.1021/ol400899e
Stewart, J.D., Fields, S.C., Kochhar, K.S. and Pinnick, H.W. (1987) α-Arylation of Pyrrolidinones. The Journal of Organic Chemistry, 52, 2110-2113. >https://doi.org/10.1021/jo00386a045
Rossi, R.A. and Alonso, R.A. (1980) Photostimulated Reactions of N, N-Disubstituted Amide Enolate Anions with Haloarenes by the SRN1 Mechanism in Liquid Ammonia. The Journal of Organic Chemistry, 45, 1239-1241. >https://doi.org/10.1021/jo01295a015
Ghosh, S., De, S., Kakde, B.N., Bhunia, S., Adhikary, A. and Bisai, A. (2012) Intramolecular Dehydrogenative Coupling of Sp
2 C-H and Sp
3 C-H Bonds: An Expeditious Route to 2-Oxindoles. Organic Letters, 14, 5864-5867. >https://doi.org/10.1021/ol302767w
Jia, Y. and Kündig, E.P. (2009) Oxindole Synthesis by Direct Coupling of C
sp2-H and C
sp2-H Centers. Angewandte Chemie International Edition, 48, 1636-1639. >https://doi.org/10.1002/anie.200805652
Perry, A. and Taylor, R.J.K. (2009) Oxindole Synthesis by Direct C-H, Ar-H Coupling. Chemical Communications, 2009, 3249-3251. >https://doi.org/10.1039/b903516h
Hama, T., Liu, X., Culkin, D.A. and Hartwig, J.F. (2003) Palladium-Catalyzed α-Arylation of Esters and Amides under More Neutral Conditions. Journal of the American Chemical Society, 125, 11176-11177. >https://doi.org/10.1021/ja036792p
Shaaban, S., Tona, V., Peng, B. and Maulide, N. (2017) Hydroxamic Acids as Chemoselective (Ortho‐Amino)Arylation Reagents via Sigmatropic Rearrangement. Angewandte Chemie International Edition, 56, 10938-10941. >https://doi.org/10.1002/anie.201703667
Johnson, S., Kovács, E. and Greaney, M.F. (1964) Arylation and Alkenylation of Activated Alkyl Halides Using Sulfonamides. Chemical Communications, 56, 3222-3224. >https://doi.org/10.1039/D0CC00220H
Barlow, H.L., Rabet, P.T.G., Durie, A., Evans, T. and Greaney, M.F. (2019) Arylation Using Sulfonamides: Phenylacetamide Synthesis through Tandem Acylation-Smiles Rearrangement. Organic Letters, 21, 9033-9035. >https://doi.org/10.1021/acs.orglett.9b03429
Liu, J., Ba, D., Lv, W., Chen, Y., Zhao, Z. and Cheng, G. (2019) Base-Promoted Michael Addition/Smiles Rearrangement/N-Arylation Cascade: One-Step Synthesis of 1,2,3-Trisubstituted 4-Quinolones from Ynones and Sulfonamides. Advanced Synthesis and Catalysis, 362, 213-223.
Zhang, H., Xiao, Y., Lemmerer, M., Bortolato, T. and Maulide, N. (2024) Domino Conjugate Addition-1,4-Aryl Migration for the Synthesis of α, β-Difunctionalized Amides. JACS Au, 4, 2456-2461. >https://doi.org/10.1021/jacsau.4c00378