ojav Open Journal of Acoustics and Vibration 2328-0530 2328-0522 beplay体育官网网页版等您来挑战! 10.12677/ojav.2024.124010 ojav-101684 Articles 数学与物理 一种适用于复合材料层合梁的轻质非线性 吸能器
A Light-Weight Nonlinear Energy Absorber Suitable for Composite Laminated Beam
沈阳航空航天大学航空宇航学院,辽宁 沈阳 02 12 2024 12 04 103 117 25 10 :2024 20 10 :2024 20 11 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 文章提出了一种新型的非线性振动控制装置——轻质非线性吸能器(Light-Weight Nonlinear Energy Absorber, LWNEA),旨在解决轻量化复合材料结构的过度振动问题。通过理论分析与试验相结合,验证了LWNEA的减振效果。在理论方面,基于广义哈密顿原理和牛顿第二定律,建立了具有LWNEA的复合材料层合梁的动力学方程,采用伽辽金截断法对这些方程进行解耦。通过谐波平衡法和龙格–库塔法进行了解析和数值求解,两种方法相互印证。讨论了LWNEA在不同激励幅值下的减振效果。在试验方面,通过动力学试验和有限元方法对系统的固有频率进行了分析,验证了理论分析的正确性。此外,还通过试验讨论了LWNEA的减振效果以及加载位置的影响,试验结果与理论结果具有相同的变化趋势。总的来说,这项工作表明LWNEA可以取得显著的减振效果,并且对系统的固有频率影响较小。因此,本研究将为轻量化复合材料结构的振动抑制提供重要的研究思路。
This paper proposes a novel nonlinear vibration control device called the light-weight nonlinear energy absorber (LWNEA). It aims to solve the problem of excessive vibration of light-weight composite structures. The vibration suppression effect of LWNEA is validated by combining theoretical analysis with experiments. In the theoretical field, based on the Hamilton’ principle and the Newton’ second law, the dynamic equations of the composite laminated beam with LWNEA are established. These equations are decoupled by the Galerkin truncation method. The harmonic balance method and the Runge-Kutta method are used for analytical and numerical solutions, and the two methods confirm each other. The vibration suppression effect of LWNEA under different excitation amplitudes is discussed. In the experimental field, the natural frequency of the system is analyzed by dynamic experiments and the finite element method, which validate the correctness of the theoretical analysis. Moreover, the vibration suppression effect and the influence of the loading position of LWNEA are discussed through experiments. The experimental results show the same change trend as the theoretical results. In general, this work shows that LWNEA can achieve a significant vibration suppression effect, and the impact on the natural frequency of the system is small. Therefore, this study will provide an important research idea for vibration suppression of light-weight composite structures.
复合材料结构,轻质非线性吸能器,振动抑制,理论–试验验证
Composite Material Structure
Light-Weight Nonlinear Energy Absorber Vibration Suppression Theoretical-Experimental Validation
1. 引言

复合材料结构由于其良好的组织性能和力学性能,在各个工程领域得到了广泛的应用 [1] - [3] 。然而,在实际工作环境中,复合材料结构往往会产生不必要的振动 [4] 。因此,对复合材料结构进行振动抑制研究具有重要的工程意义和实用价值。

在层合结构中,梁结构具有显著的市场需求和研究价值 [5] [6] 。因此,层合梁在土木工程 [7] ,航空航天 [8] ,船舶制造 [9] 等领域中得到了广泛的应用,其振动特性也引起了学者们的关注 [10] 。Jin等人 [11] 基于Reddy高阶理论,通过Fourier-Ritz方法提出了一种统一的公式,并分析了层合梁的振动和阻尼。Kahya等人 [12] 提出了一种基于一阶剪切变形理论的五节点、十自由度有限元模型,分析功能梯度梁的自由振动和屈曲。对于缓慢旋转的可伸展梁,Kloda等人 [13] 基于欧拉伯努利梁理论,忽略了剪切变形,分析了梁的非线性纵向–弯曲–扭曲振动。Qu等人 [14] 采用改进的变分原理与多段分割技术相结合,根据高阶剪切变形理论推导了任意铺层、任意边界条件下复合材料层合梁动力公式。为了求出梁自由振动的近似解,Canales等人 [15] 利用任意边界条件提出了各向同性层合梁自由振动的近似解,所得结果与有限元解的结果之间得到了很好的一致性。Kim等人 [16] 研究了裂纹复合材料层合梁模型强迫振动的半解析方法,并采用Jacobi-Ritz法求解了该模型的动力方程。为了研究横向拉伸的影响,Yurtsever等人 [17] 提出了一种新的有限元公式,对层压复合梁应用了不同类型的边界条件和材料变化,以进行弯曲和自由振动分析。这些对于梁振动特性的研究为工程实际应用提供了一定的理论支撑,使梁的振动控制也引起了广泛关注。

振动控制技术包括:主动振动控制 [18] ,被动振动控制 [19] [20] 以及半主动振动控制 [21] 。与主动和半主动隔振器相比,被动隔振技术可以在没有外部能量和稳定控制算法的情况下运行 [22] ,具有结构简单、安装方便、可靠性高等优点 [23] 。传统的被动振动控制装置主要是线性振动控制装置。与传统的线性振动装置相比,非线性减振器具有阻尼频带宽、可靠性好等优点 [24] 。因此,利用非线性能量汇来控制系统受到越来越多的关注和深入的研究 [25] 。Shahraeeni等人 [26] 使用线性阻尼元件对刚度非线性的准零刚度隔振器进行研究,讨论了阻尼非线性对其动力学和性能的影响。Zhang等人 [27] 提出了一种由干涉器增强的新型非线性能量汇,有效地抑制振动耗能和幅度频率响应。Zang等人 [28] 提出使用广义透射率来评价非线性吸能器的性能。Wang等人 [29] 对恢复力提出了各种修改,增强了非线性能量汇(NESs)对输入能级变化的鲁棒性。

为了解决非线性减振装置的大质量问题,一些研究者在实验中提出了杠杆结构和转子结构。Wang等人 [30] 通过设计杠杆型非线性能量汇与超磁伸缩材料相结合的方法,提出了一种航天器振动控制装置。为了减小传统非线性能量阱所需的惯性质量的大小和重量,Cao等人 [31] 提出了一种通过转子系统进行减振的惯性非线性能量阱。Li等人 [32] 采用超材料的压缩扭转耦合效应来构建内耗放大机制,将其与NES结合形成非线性能量吸收器。为了降低质量,增强减振效果,Xu等人 [33] 提出了一种新颖的非线性能量阱主动变刚度装置。值得注意的是,在这些实验研究中,减振目标结构的质量都较大。然而,针对轻量化减振结构的试验研究很少,由于复合材料结构的质量较低,也需要轻量化的振动控制装置。为此,本文设计了一种新型的轻质非线性吸能器,并进行了理论与试验相结合的验证研究。该工作可以促进和拓宽轻质非线性吸能器的工程应用,为复合材料结构的振动控制提供重要的研究方向。

2. 动力学建模

附加轻质非线性吸能器(LWNEA)的复合材料层合梁横向振动力学模型如 图1 所示,其中w为梁的横向振动位移。复合材料层合梁的长度、宽度和高度分别为l、b和h,梁受到均匀分布的力 F = F 0 × cos ( ω t ) ,其中F0和ω分别为外激励的幅值和频率。梁中端连接了一个轻型非线性吸能器。kN为轻质非线性吸能器的立法非线性刚度,cN为轻质非线性吸能器的阻尼,mN为轻质非线性吸能器的质量。

Figure 1. Composite laminated beam with LWNEA--图1. 附加LWNEA的复合材料层合梁--

复合材料层合梁的轴向应变 u x ( x , z ) 与横向应变 u z ( x , z ) 的关系如下 [34]

u x ( x , z ) = z w 0 x u z ( x , z ) = w 0 (1)

复合材料层合梁的位移–应变关系如下,其中w0为梁的中性面位移。

ε x x = u x x + 1 2 ( u z x ) 2 = z 2 w 0 x 2 (2)

第k层复合材料主方向的应力应变关系由下式给出 [35]

[ σ 1 σ 2 σ 3 ] = [ Q 11 Q 12 0 Q 12 Q 22 0 0 0 Q 66 ] [ ε 1 ε 2 ε 3 ] (3)

其中 Q i j ( i , j = 1 , 2 , 6 ) 为材料在主轴方向的系数,它们与弹性模量的关系为 [36]

Q 11 = E 1 1 μ 12 μ 21 , Q 12 = μ 12 E 2 1 μ 12 μ 21 , Q 22 = E 2 1 μ 12 μ 21 , Q 66 = G 12 (4)

应力–应变关系与层数有关。将材料第k层主方向应力–应变分量转换为复合材料层合梁坐标系:

[ σ 1 σ 2 σ 3 ] ( k ) = [ Q 11 ¯ Q 12 ¯ Q 16 ¯ Q 12 ¯ Q 22 ¯ Q 26 ¯ Q 61 ¯ Q 62 ¯ Q 66 ¯ ] ( k ) [ ε 1 ε 2 ε 3 ] ( k ) (5)

Qij Q i j ¯ 的关系可以用矩阵形式表示为:

[ Q 11 ¯ Q 12 ¯ Q 16 ¯ Q 12 ¯ Q 22 ¯ Q 26 ¯ Q 61 ¯ Q 62 ¯ Q 66 ¯ ] = [ I ] [ Q 11 Q 12 Q 16 Q 12 Q 22 Q 26 Q 61 Q 62 Q 66 ] [ I ] T (6)

[I]是单层材料的主方向与复合材料层合梁的坐标之间的变换矩阵,可以得到如下矩阵 [37]

[ I ] = [ cos 2 ( θ ) sin 2 ( θ ) 2 cos ( θ ) sin ( θ ) sin 2 ( θ ) cos 2 ( θ ) 2 cos ( θ ) sin ( θ ) cos ( θ ) sin ( θ ) cos ( θ ) sin ( θ ) cos 2 ( θ ) sin 2 ( θ ) ] (7)

θ表示复合材料层合梁中每层主方向与x轴方向之间的夹角。本文选择分层方法为[0/90/0/90]s,层数为40。

复合材料层合梁的势能U计算公式如下:

U = b 0 l h 2 h 2 σ 1 ( k ) ε x x d x d z = 0 l ( N x x + 2 M x x 2 ) d x (8)

式中Nx和Mx可以用A11,B11和D11表示。

[ N x M x ] = [ A 11 B 11 B 11 D 11 ] [ u x 2 w x 2 ] (9)

上式中的A11,B11和D11表示为 [38]

( A 11 , B 11 , D 11 ) = k = 1 N z k z k + 1 ( 1 , z , z 2 ) Q ¯ 11 ( k ) d z (10)

接下来,应用广义哈密顿原理,可以得到系统动能T的变分形式表达式为:

T = b 0 l h 2 h 2 [ I 0 ( u ˙ + w ˙ ) + I 2 w ˙ x ] d x d z I 0 = h 2 h 2 ρ d z I 2 = h 2 h 2 z 2 ρ d z (11)

外激励虚功δWf的变分形式为:

δ W f = [ F c w t ] δ w (12)

LWNEA虚功的变分形式可以写成 [39]

δ W e = [ k N ( w d u n ) 3 + c N ( w d t u n t ) ] δ ˜ ( x d ) (13)

式子 δ ˜ 为狄拉克函数,d为LWNEA附加的位置。

连续系统的动力学方程可以由能量原理导出。为了使研究不仅仅局限于保守系统,所使用的能量原理为广义哈密顿原理 [38]

梁的势能为U,梁的动能为T,LWNEA的虚功为δWe,外力的虚功为δWf,则系统在任何时候都必须满足实际运动 [40]

δ t 1 t 2 ( T U ) d t + t 1 t 2 ( δ W e + δ W f ) d t = 0 (14)

控制LWNEA复合材料层合梁振动的微分方程可推导为:

D 11 4 w x 4 + I 0 2 w t 2 I 2 4 w x 2 t 2 + c l b w t F 0 l b cos ω t + [ k N ( w d u n ) 3 + c N ( w d t u n t ) ] δ ˜ ( x d ) l b = 0 (15)

根据牛顿第二定律推导出LWNEA的动力学方程如下 [41]

m N 2 u n t 2 + k N ( u n w d ) 3 + c N ( u n t w d t ) = 0 (16)

下面介绍无量纲 [42]

x ¯ = x l , w ¯ = w h , α = l h , I ¯ 0 = h 3 D 11 l 2 b 2 F 0 , I ¯ 2 = h 3 D 11 I 2 l 2 b 2 F 0 I 0 , D ¯ 11 = b h D 11 l 3 F 0 , c ¯ = c h 2 l b F 0 D 11 l b I 0 , ω ¯ = l b ω h l b I 0 D 11 , t ¯ = t h l b D 11 l b I 0 , m ¯ N = m N h 3 D 11 F 0 I 0 l 3 b 3 , k ¯ N = k N h 3 F 0 , c ¯ N = c N h 2 l 2 b F 0 D 11 l b I 0 , w ¯ d = w d h , u ¯ n = u n h (17)

微分方程被转换成无量纲形式:

D ¯ 11 4 w ¯ x ¯ 4 + I ¯ 0 2 w ¯ t ¯ 2 I ¯ 2 4 w ¯ α 2 x ¯ 2 t ¯ 2 + c ¯ w ¯ t ¯ cos ω ¯ t ¯ [ k ¯ N ( w ¯ d u ¯ n ) 3 + c ¯ N ( w ¯ d t ¯ u ¯ n t ¯ ) ] δ ( x ¯ d n ) = 0 (18)

m ¯ N 2 u n t ¯ 2 + k ¯ N ( u ¯ n w ¯ d ) 3 + c ¯ N ( u ¯ n t ¯ w ¯ d t ¯ ) = 0 (19)

图1 中,复合材料层合梁两端固定。因此,复合材料层合固支梁的边界条件为:

ϕ ( x 0 ) = 0 , ϕ ( x 0 ) = 0 ( x = 0 , l ) (20)

复合材料层合梁选用的材料为T700,系统的物理几何参数见 表1 表2

Table 1. Correlation coefficient of composite laminated beam system [43]

表1. 复合材料层合梁相关系数 [43]

名称

符号

数值

长度

l

700 mm

宽度

d

100 mm

高度

h

4 mm

密度

ρ

1512 kg/m3

质量

mb

0.43 kg

沿着纤维方向的杨氏模量

E1

120 GPa

垂直纤维方向的杨氏模量

E2

8.7GPa

泊松比

μ12

0.32

弹性模量

G12

4 GPa

阻尼

c

1.86 N∙s/m

夹层数量

k

40

<xref></xref>Table 2. Parameters of LWNEATable 2. Parameters of LWNEA 表2. LWNEA参数

名称

符号

数值

质量

mN

0.1 kg

阻尼

cN

0.36N·s/m

刚度

kN

4.0 × 108N/m3

3. 公式解析分析 3.1. 伽辽金截断法

采用伽辽金截断法求解一组偏微分控制公式(18)和(19),其解设为:

w ¯ ( x ¯ , t ¯ ) = n = 1 N ϕ n ( x ¯ ) q n ( t ¯ ) (21)

基于伽辽金截断法,截断非线性方程(18)和(19)为常微分方程:

D ¯ 11 m = 1 N ϕ m ( 4 ) ( x ¯ ) q m ( t ¯ ) + I ¯ 0 m = 1 N ϕ m ( x ¯ ) q ¨ m ( t ¯ ) I ¯ 2 α 2 m = 1 N ϕ m ( x ¯ ) q ¨ m ( t ¯ ) + c ¯ m = 1 N ϕ m ( x ¯ ) q ˙ m ( t ¯ ) cos ω ¯ t ¯ + { k ¯ N [ n = 1 N ϕ n ( d n ) q n ( t ¯ ) u ¯ n ] 3 + c ¯ N [ n = 1 N ϕ n ( d n ) q ˙ n ( t ¯ ) u ¯ n t ¯ ] } ψ m ( d ) = 0 (22)

m ¯ N 2 u n t ¯ 2 + k ¯ N [ u ¯ n n = 1 N ϕ n ( d n ) q n ( t ¯ ) ] 3 + c ¯ N [ u ¯ n t ¯ n = 1 N ϕ n ( d n ) q ˙ n ( t ¯ ) ] = 0 (23)

qn (t)为横向振动的广义位移,N为大于0的整数。常微分方程推导如下:

K m q m ( t ¯ ) + M m q ¨ m ( t ¯ ) + C m q ˙ m ( t ¯ ) + F m cos ω ¯ t ¯ + { k ¯ N [ n = 1 N ϕ n ( d n ) q n ( t ¯ ) u ¯ n ] 3 + c ¯ N [ n = 1 N ϕ n ( d n ) q ˙ n ( t ¯ ) u ¯ n t ¯ ] } ψ m ( d ) = 0 (24)

其中m为伽辽金截断阶数。

K m = D ¯ 11 0 1 ϕ m ( 4 ) ( x ¯ ) ψ m ( x ¯ ) d x , M m = I ¯ 0 0 1 ϕ m ( x ¯ ) ψ m ( x ¯ ) d x I ¯ 2 α 2 0 1 ϕ m ( x ¯ ) ψ m ( x ¯ ) d x , C m = c ¯ 0 1 ϕ m ( x ¯ ) ψ m ( x ¯ ) d x , F m = 0 1 ψ m ( x ¯ ) d x (25)

m ¯ N n = 1 N ϕ n ( d n ) q ¨ n ( t ¯ ) + k ¯ N [ u ¯ n n = 1 N ϕ n ( d n ) q n ( t ¯ ) ] 3 + c ¯ N [ u ¯ n t ¯ n = 1 N ϕ n ( d n ) q ˙ n ( t ¯ ) ] = 0 (26)

接着分析了伽辽金截断阶数对系统振动响应的影响,并判断了其收敛性。系统初始值设置如下:

q 1 = 0.01 , q ˙ 1 = 0 , q j = 0 , q ˙ j = 0 , j = 2 , , N (27)

数值解的稳态幅频响应曲线如 图2 所示。可以看出,在均匀谐波力作用下,不同阶次的GTM对系统的幅值响应影响不大。为了数值解的准确性,在后续仿真中采用伽辽金截断方程的阶数为4阶。

Figure 2. The response of the forced vibration with different truncated orders--图2. 不同截断阶数的受迫振动响应--
3.2. 谐波平衡法

用伽辽金截断法得到常微分的控制方程。用谐波平衡法求解了方程的近似解。在求解中,只考虑奇数项:

q m = i = 0 ( y 1 ) / 2 { a m , 2 i + 1 cos [ ( 2 i + 1 ) ω t ] + b m , 2 i + 1 sin [ ( 2 i + 1 ) ω t ] } , u n = i = 0 ( y 1 ) / 2 { a n , 2 i + 1 cos [ ( 2 i + 1 ) ω t ] + b n , 2 i + 1 sin [ ( 2 i + 1 ) ω t ] } , (28)

其中y是谐波阶数。

以一阶伽辽金截断和一阶谐波假设为例,给出了谐波平衡法的推导过程。则附加LWNEA的梁弯曲振动控制方程为:

M 1 q ¨ 1 + K 1 q 1 + C 1 q ˙ 1 + F 1 cos ( ω ¯ t ¯ ) ( k ¯ N ( ϕ 1 ( d 1 ) q 1 u ¯ 1 ) 3 + c ¯ N ( ϕ 1 ( d 1 ) q ˙ 1 u ¯ ˙ 1 ) ) ψ N , 1 = 0 (29)

m ¯ N u ¯ ¨ 1 + [ k ¯ N ( u ¯ 1 ϕ 1 ( d 1 ) q 1 ) 3 + c ¯ N ( u ¯ ˙ 1 ϕ 1 ( d 1 ) q ˙ 1 ) ] = 0 (30)

其中

ϕ N , 1 = ϕ 1 ( 1 2 ) , ψ N , 1 = ψ 1 ( 1 2 ) (31)

一阶调谐波假设为:

q 1 = a 1 , 1 cos ( ω ¯ t ¯ ) + b 1 , 1 sin ( ω ¯ t ¯ ) , u N = a N , 1 cos ( ω ¯ t ¯ ) + b N , 1 sin ( ω ¯ t ¯ ) , (32)

Figure 3. Comparison of analytic solution of harmonic balance method with numerical solution of Runge-Kutta method--图3. 谐波平衡法解析解与龙格–库塔法数值解的比较--

谐波平衡法(HBM)与龙格–库塔法(RK)得到的幅频响应曲线对比情况如 图3 所示。显然,两种方法得到的结果是完全一致的。此外,曲线还表明,在第一次主共振处,曲线呈现向右弯曲的非线性硬化特征,龙格库塔法正扫和反扫的数值结果对比显示出非线性跳变现象。

将式(32)代入(29),提取各阶谐波对应的系数方程。因此,可以得到如下代数方程:

3 4 A N , 1 ψ N , 1 k ¯ N ( A N , 1 2 + B N , 1 2 ) + ω ¯ K 1 b 1 , 1 ω ¯ 2 M 1 a 1 , 1 + ω ¯ c ¯ N B N , 1 ψ N , 1 + K 1 a 1 , 1 + F 1 = 0 , ω ¯ K 1 a 1 , 1 ω ¯ 2 M 1 b 1 , 1 ω ¯ c ¯ N A N , 1 ψ N , 1 + K 1 b 1 , 1 = 0 , 3 4 A N , 1 k ¯ N ( A N , 1 2 + B N , 1 2 ) + ω ¯ 2 m ¯ N a N , 1 + ω ¯ c ¯ N B N , 1 = 0 , 3 4 B N , 1 k ¯ N ( A N , 1 2 + B N , 1 2 ) + ω ¯ 2 m ¯ N b N , 1 ω ¯ c ¯ N A N , 1 = 0 (33)

其中

A N , 1 = ϕ N , 1 a 1 , 1 a N , 1 , B N , 1 = ϕ N , 1 b 1 , 1 b N , 1 (34)

4. 减振效果

用减振百分比评估轻质非线性吸能器的减振效果。无LWNEA和有LWNEA的复合材料层合梁的主共振最大值分别记为A0和A1。LWNEA的减振百分比为:

R = A 0 A 1 A 0 × 100 % (35)

Figure 4. Vibration suppression effect ((a) F0 = 0.84 N/m; (b) F0 = 1.26 N/m; (c) F0 = 2.11 N/m)--图4. 抑制振动效果((a) F0 = 0.84 N/m;(b) F0 = 1.26 N/m;(c) F0 = 2.11 N/m)-- Figure 5. Comparison of vibration suppression effort at different loading positions--图5. 不同加载位置的减振效果比较--

图4 为不同均匀激励幅值F0时LWNEA对梁中点位置的减振效果。与小激励幅值F0 = 0.84 N/m相比,中激励幅值F0 = 1.26 N/m和大激励幅值F0 = 2.11 N/m的减振百分比分别提高了7.83%和24.65%。研究发现,激励幅值的变化对第一主共振的减振效果有影响。随着激励幅值的增大,一阶主共振响应的非线性硬化特征逐渐明显,减振率逐渐增大。

为了探讨附加位置对LWNEA减振效果的影响。LWNEA连接在梁上的不同加载位置(0.25l、0.5l),加速度激励设为2.11 N/m,在梁中点进行理论分析。分析结果如 图5 所示,结果表明,安装在梁上0.5l位置的LWNEA具有较好的减振效果。

通过上述理论分析,可以证明轻质非线性吸能器对复合材料层合梁具有显著的减振效果,对梁的固有频率影响较小。下面将通过试验验证理论分析的有效性。

<xref></xref>5. 试验 5.1. 试验的设计

为了抑制复合材料层合梁等轻质结构的振动,设计了轻质非线性吸能器。该轻质非线性吸能器主要由三部分组成,如 图6(a) 所示:a为非线性刚度装置;b是质量块;c是阻尼块。

Figure 6. Light-weight nonlinear energy absorber ((a) 3D simulation model; (b) the photograph)--图6. 轻质非线性吸能器((a) 三维仿真模型;(b) 照片)--

将制备好的复合材料层合梁安装在振动试验台上进行振动控制试验。如 图7(a) 所示,复合材料层合梁通过夹具固定在振动测试平台上。LWNEA安装在梁的下平面0.25l或0.5l处。如 图7(b) 所示,将梁上平面0.5l的幅值响应通过加速度传感器转换为信号,通过LMS数据采集仪传输到上位机。

Figure 7. Vibration control experiment ((a) 3D simulation model; (b) the photograph)--图7. 振动控制试验((a) 三维仿真模型;(b) 实物图)--
5.2. 试验前的准备

采用有限元法和试验法对复合材料层合梁的前四阶固有频率进行了分析。将理论分析、有限元法和试验法计算的非受控梁的固有频率进行对比,如 表3 所示。结果表明,理论分析、有限元分析和试验方法得到的结果基本一致,证明了理论模型的合理性和可靠性。

<xref></xref>Table 3. Comparison of natural frequencies of beamTable 3. Comparison of natural frequencies of beam 表3. 梁固有频率比较

频率(Hz)

f1

f2

f3

f4

理论分析

56.69

156.30

303.30

506.29

有限元分析

54.83

151.06

295.97

488.95

Xn

61.76

169.18

311.50

520.00

5.3. 试验结果

为了更好地比较试验结果和理论结果,引入了传递率的概念 [44]

Q = RMS ( A w ) RMS ( A x ) (36)

Q是传递率。Aw是光束的振幅。Ax为加速度激励到振动试验平台的幅值。为了提高传递率的精度,采用了幅值响应的均方根(RMS) [42]

将理论分析的振幅转化为传递率的形式,并与试验的传递率进行比较。如 图8 所示,试验结果与理论曲线吻合较好。因此,试验设计是合理的、可靠的。

为了验证不同激励下LWNEA对复合材料层合梁的减振效果,试验数据选取梁中点位置传递率进行获取。 图9 为LWNEA在0.2g、0.3g和0.5g不同加速度下的减振效果。

试验结果表明,LWNEA具有良好的减振效果,且对系统固有频率的影响很小。通过观察 图9 可以发现,激励幅值的变化对LWNEA的减振效果有影响。中点的第一阶主共振在加速度为0.2 g、0.3 g和0.5 g时,减振效果分别提高了4.85%和8.98%。显然,随着激励的增加,LWNEA的减振效果增强,这与理论结果一致。

图10 显示了LWNEA安装在梁下平面不同位置(0.25l和0.5l)的LWNEA的减振效果。与安装在0.25l的LWNEA相比,安装在0.5l的LWNEA具有更好的减振效果。结论与理论分析一致。

Figure 8. Comparison of experiment and simulation results--图8. 试验与仿真结果的比较-- Figure 9. Vibration suppression effort of LWNEA ((a) 0.2 g; (b) 0.3 g; (c) 0.5 g)--图9. LWNEA的减振效果((a) 0.2 g;(b) 0.3 g;(c) 0.5 g)-- Figure 10. Transmissibility of experimental result (0.5 g)--图10. 试验的传播率(0.5 g)--
6. 总结

根据复合材料结构的轻量化特点,提出了一种新型的轻质非线性吸能器(Light-Weight Nonlinear Energy Absorber, LWNEA)。从理论上分析了LWNEA对复合材料层合梁的减振效果。设计并制造了复合材料层合梁和LWNEA的实体模型,搭建了振动试验平台,测试了LWNEA对复合材料层合梁的减振效果。主要结论如下:

(1) LWNEA对复合材料层合梁有明显的减振效果。试验结果表明减振率可达80%,且对系统的固有频率影响很小。

(2) 在较大的激励下,LWNEA的减振效果较高。

(3) 验证了LWNEA的加载位置对其减振效果的影响,建议安装在梁的中点处。

因此,本研究提出的LWNEA是一种高性能、低成本、可实现的轻质非线性减振器,有望成为轻量化复合材料结构的减振设备。

References Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M. and Elharfi, A. (2021) Polymer Composite Materials: A Comprehensive Review. Composite Structures, 262, Article 113640. >https://doi.org/10.1016/j.compstruct.2021.113640 Prakash, R. (1980) Non-Destructive Testing of Composites. Composites, 11, 217-224. >https://doi.org/10.1016/0010-4361(80)90428-0 Rohacs, J., Kale, U. and Rohacs, D. (2022) Radically New Solutions for Reducing the Energy Use by Future Aircraft and Their Operations. Energy, 239, Article 122420. >https://doi.org/10.1016/j.energy.2021.122420 Ricci, F., Monaco, E., Boffa, N.D., Maio, L. and Memmolo, V. (2022) Guided Waves for Structural Health Monitoring in Composites: A Review and Implementation Strategies. Progress in Aerospace Sciences, 129, Article 100790. >https://doi.org/10.1016/j.paerosci.2021.100790 Yu, F., Zhou, H., Jiang, N., Fang, Y., Song, J., Feng, C., et al. (2020) Flexural Experiment and Capacity Investigation of CFRP Repaired RC Beams under Heavy Pre-Damaged Level. Construction and Building Materials, 230, Article 117030. >https://doi.org/10.1016/j.conbuildmat.2019.117030 Karama, M., Abou Harb, B., Mistou, S. and Caperaa, S. (1998) Bending, Buckling and Free Vibration of Laminated Composite with a Transverse Shear Stress Continuity Model. Composites Part B: Engineering, 29, 223-234. >https://doi.org/10.1016/s1359-8368(97)00024-3 Ferreira, F.P.V., Martins, C.H. and De Nardin, S. (2020) Advances in Composite Beams with Web Openings and Composite Cellular Beams. Journal of Constructional Steel Research, 172, Article 106182. >https://doi.org/10.1016/j.jcsr.2020.106182 Achor, C.H., Kwon, Y.W., Didoszak, J.M., Crow, N.E. and Hardman, D.J. (2022) Study of Air-Backed and Water-Backed Carbon Fiber Composite Plates Subjected to Underwater Shock Loading. Composite Structures, 300, Article 116147. >https://doi.org/10.1016/j.compstruct.2022.116147 Liang, X., Wang, W., Hu, L. and Feng, P. (2024) Experimental and Numerical Study on High-Temperature Performance of Prestressed CFRP-Reinforced Steel Columns. Engineering Structures, 301, 117347. >https://doi.org/10.1016/j.engstruct.2023.117347 Nguyen, N., Vo, T.P. and Nguyen, T. (2020) An Improved Shear Deformable Theory for Bending and Buckling Response of Thin-Walled FG Sandwich I-Beams Resting on the Elastic Foundation. Composite Structures, 254, Article 112823. >https://doi.org/10.1016/j.compstruct.2020.112823 Jin, G., Yang, C. and Liu, Z. (2016) Vibration and Damping Analysis of Sandwich Viscoelastic-Core Beam Using Reddy’s Higher-Order Theory. Composite Structures, 140, 390-409. >https://doi.org/10.1016/j.compstruct.2016.01.017 Kahya, V. and Turan, M. (2017) Finite Element Model for Vibration and Buckling of Functionally Graded Beams Based on the First-Order Shear Deformation Theory. Composites Part B: Engineering, 109, 108-115. >https://doi.org/10.1016/j.compositesb.2016.10.039 Kloda, L. and Warminski, J. (2022) Nonlinear Longitudinal-Bending-Twisting Vibrations of Extensible Slowly Rotating Beam with Tip Mass. International Journal of Mechanical Sciences, 220, Article 107153. >https://doi.org/10.1016/j.ijmecsci.2022.107153 Qu, Y., Long, X., Li, H. and Meng, G. (2013) A Variational Formulation for Dynamic Analysis of Composite Laminated Beams Based on a General Higher-Order Shear Deformation Theory. Composite Structures, 102, 175-192. >https://doi.org/10.1016/j.compstruct.2013.02.032 Canales, F. and Mantari, J. (2018) Free Vibration of Thick Isotropic and Laminated Beams with Arbitrary Boundary Conditions via Unified Formulation and Ritz Method. Applied Mathematical Modelling, 61, 693-708. >https://doi.org/10.1016/j.apm.2018.05.005 Kim, S., Kim, K., Ri, M., Paek, Y. and Kim, C. (2021) A Semi-Analytical Method for Forced Vibration Analysis of Cracked Laminated Composite Beam with General Boundary Condition. Journal of Ocean Engineering and Science, 6, 40-53. >https://doi.org/10.1016/j.joes.2020.04.005 Yurtsever, B., Bab, Y., Kutlu, A. and Dorduncu, M. (2024) A New C0 Continuous Refined Zigzag {1,2} Finite Element Formulation for Flexural and Free Vibration Analyses of Laminated Composite Beams. Composite Structures, 331, Article 117890. >https://doi.org/10.1016/j.compstruct.2024.117890 Xu, P., Lan, X., Zeng, C., Zhang, X., Liu, Y. and Leng, J. (2023) Dynamic Characteristics and Active Vibration Control Effect for Shape Memory Polymer Composites. Composite Structures, 322, Article 117327. >https://doi.org/10.1016/j.compstruct.2023.117327 Sareen, A., Hourigan, K. and Thompson, M.C. (2024) Passive Control of Flow-Induced Vibration of a Sphere Using a Trip Wire. Journal of Fluids and Structures, 124, Article 104052. >https://doi.org/10.1016/j.jfluidstructs.2023.104052 Jiang, G., Wang, Y., Li, F. and Jing, X. (2021) An Integrated Nonlinear Passive Vibration Control System and Its Vibration Reduction Properties. Journal of Sound and Vibration, 509, Article 116231. >https://doi.org/10.1016/j.jsv.2021.116231 La, V.D. and Nguyen, N.T. (2024) Truly Optimal Semi-Active Damping to Control Free Vibration of a Single Degree of Freedom System. Theoretical and Applied Mechanics Letters, 14, Article 100505. >https://doi.org/10.1016/j.taml.2024.100505 Kang, Y.K., Park, H.C., Kim, J. and Choi, S. (2002) Interaction of Active and Passive Vibration Control of Laminated Composite Beams with Piezoceramic Sensors/Actuators. Materials&Design, 23, 277-286. >https://doi.org/10.1016/s0261-3069(01)00081-4 Guo, H., Yang, T., Chen, Y. and Chen, L. (2022) Singularity Analysis on Vibration Reduction of a Nonlinear Energy Sink System. Mechanical Systems and Signal Processing, 173, Article 109074. >https://doi.org/10.1016/j.ymssp.2022.109074 Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018) Nonlinear Dissipative Devices in Structural Vibration Control: A Review. Journal of Sound and Vibration, 423, 18-49. >https://doi.org/10.1016/j.jsv.2018.02.052 Wang, G., Ding, H. and Chen, L. (2022) Performance Evaluation and Design Criterion of a Nonlinear Energy Sink. Mechanical Systems and Signal Processing, 169, Article 108770. >https://doi.org/10.1016/j.ymssp.2021.108770 Shahraeeni, M., Sorokin, V., Mace, B. and Ilanko, S. (2022) Effect of Damping Nonlinearity on the Dynamics and Performance of a Quasi-Zero-Stiffness Vibration Isolator. Journal of Sound and Vibration, 526, Article 116822. >https://doi.org/10.1016/j.jsv.2022.116822 Zhang, Y., Lu, Y., Zhang, W., Teng, Y., Yang, H., Yang, T., et al. (2019) Nonlinear Energy Sink with Inerter. Mechanical Systems and Signal Processing, 125, 52-64. >https://doi.org/10.1016/j.ymssp.2018.08.026 Zang, J., Zhang, Y., Ding, H., Yang, T. and Chen, L. (2019) The Evaluation of a Nonlinear Energy Sink Absorber Based on the Transmissibility. Mechanical Systems and Signal Processing, 125, 99-122. >https://doi.org/10.1016/j.ymssp.2018.05.061 Wang, J., Zheng, Y., Ma, Y. and Wang, B. (2024) Experimental Study on Asymmetric and Bistable Nonlinear Energy Sinks Enabled by Side Tracks. Mechanical Systems and Signal Processing, 206, Article 110874. >https://doi.org/10.1016/j.ymssp.2023.110874 Wang, Z., Zang, J. and Zhang, Y. (2022) Method for Controlling Vibration and Harvesting Energy by Spacecraft: Theory and Experiment. AIAA Journal, 60, 6097-6115. >https://doi.org/10.2514/1.j061998 Cao, Y., Li, Z., Dou, J., Jia, R. and Yao, H. (2022) An Inerter Nonlinear Energy Sink for Torsional Vibration Suppression of the Rotor System. Journal of Sound and Vibration, 537, Article 117184. >https://doi.org/10.1016/j.jsv.2022.117184 Li, H., Yao, H., Cao, Y., Jia, R. and Dou, J. (2023) Chiral Metamaterial-Inerter Nonlinear Energy Sink for Torsional Vibration Suppression of the Rotor System. Mechanical Systems and Signal Processing, 200, Article 110640. >https://doi.org/10.1016/j.ymssp.2023.110640 Xu, K., Niu, M., Zhang, Y., Meng, C. and Chen, L. (2023) A Nonlinear Energy Sink Enhanced by Active Varying Stiffness for Spacecraft Structure: Theory, Simulation, and Experiment. Mechanical Systems and Signal Processing, 204, Article 110787. >https://doi.org/10.1016/j.ymssp.2023.110787 Özütok, A. and Madenci, E. (2017) Static Analysis of Laminated Composite Beams Based on Higher-Order Shear Deformation Theory by Using Mixed-Type Finite Element Method. International Journal of Mechanical Sciences, 130, 234-243. >https://doi.org/10.1016/j.ijmecsci.2017.06.013 Bui, X., Nguyen, T., Nguyen, N. and Vo, T.P. (2022) A General Higher-Order Shear Deformation Theory for Buckling and Free Vibration Analysis of Laminated Thin-Walled Composite I-Beams. Composite Structures, 295, Article 115775. >https://doi.org/10.1016/j.compstruct.2022.115775 Alazwari, M.A., Mohamed, S.A. and Eltaher, M.A. (2022) Vibration Analysis of Laminated Composite Higher Order Beams under Varying Axial Loads. Ocean Engineering, 252, Article 111203. >https://doi.org/10.1016/j.oceaneng.2022.111203 Wang, Z., Zang, J., Zhang, Z., Song, X., Zhang, Y. and Chen, L. (2024) Nonlinear Broadband Vibration Reduction of Nitinol-Steel Wire Rope: Mechanical Parameters Determination and Theoretical-Experimental Validation. Mechanical Systems and Signal Processing, 213, Article 111345. >https://doi.org/10.1016/j.ymssp.2024.111345 Tang, Y., Wang, G., Ren, T., Ding, Q. and Yang, T. (2021) Nonlinear Mechanics of a Slender Beam Composited by Three-Directional Functionally Graded Materials. Composite Structures, 270, Article 114088. >https://doi.org/10.1016/j.compstruct.2021.114088 Zhang, Z., Ding, H., Zhang, Y. and Chen, L. (2021) Vibration Suppression of an Elastic Beam with Boundary Inerter-Enhanced Nonlinear Energy Sinks. Acta Mechanica Sinica, 37, 387-401. >https://doi.org/10.1007/s10409-021-01062-6 Ding, H., Dowell, E.H. and Chen, L. (2018) Transmissibility of Bending Vibration of an Elastic Beam. Journal of Vibration and Acoustics, 140, Article 031007. >https://doi.org/10.1115/1.4038733 Chen, L., Li, X., Lu, Z., Zhang, Y. and Ding, H. (2019) Dynamic Effects of Weights on Vibration Reduction by a Nonlinear Energy Sink Moving Vertically. Journal of Sound and Vibration, 451, 99-119. >https://doi.org/10.1016/j.jsv.2019.03.005 Zhang, Y., Wang, Z., Cao, M., Song, X., Zang, J., Lacarbonara, W., et al. (2023) Vibration Control of Composite Laminate via Nitinol-Steel Wire Ropes: Modeling, Analysis, and Experiment. Mechanical Systems and Signal Processing, 204, Article 110775. >https://doi.org/10.1016/j.ymssp.2023.110775 Wang, C., Song, X., Zang, J. and Zhang, Y. (2023) Experimental and Theoretical Investigation on Vibration of Laminated Composite Conical-Cylindrical-Combining Shells with Elastic Foundation in Hygrothermal Environment. Composite Structures, 323, Article 117470. >https://doi.org/10.1016/j.compstruct.2023.117470 Amabili, M. (2018) Nonlinear Damping in Nonlinear Vibrations of Rectangular Plates: Derivation from Viscoelasticity and Experimental Validation. Journal of the Mechanics and Physics of Solids, 118, 275-292. >https://doi.org/10.1016/j.jmps.2018.06.004
Baidu
map