Exploring the Feasibility and Potential Mechanism of the Treatment of Lung Abscess with Indigofera stachyodes Lindl. Based on Network Pharmacology
Objective: To explore the feasibility and potential mechanisms of the treatment of lung abscess with Indigofera stachyodes Lindl. through network pharmacology and molecular docking. Methods: The medicinal material of I. stachyodes Lindl. was decocted in water and concentrated into a medicinal solution of 1.0 g/ml. Rats were randomly divided into four groups, including the blank plasma group, the blood collection group at 1 h after administration, the blood collection group at 2 h after administration, and the blood collection group at 3 h after administration (8 rats in each group). The rats were given continuous intragastric administration for one week. Blood samples were collected from each group, and plasma was prepared. The chemical components of the plasma from the four groups were identified by Liquid Chromatography-Mass Spectrometry (LC-MS) and Venn diagrams were performed for screening by Venny 2.1. The chemical components and targets of I. stachyodes Lindl. were screened by TCMSP, SymMap, SwissTargetPrediction, and SEA databases. Disease targets of lung abscess were screened by GeneCards, OMIM database. Drug-disease intersection targets were obtained through R language, key targets were obtained through protein interactions and PPI analysis, and KEGG, GO enrichment analysis and molecular docking were performed using key targets. Results: Through HPLC-MS analysis and exclusion of components that could not be searched in TCMSP, 11 active compounds of I. stachyodes Lindl. such as Hypoxanthine were obtained, along with 337 targets, 2243 disease targets related to lung abscess, and 113 intersection targets between “I. stachyodes Lindl.-lung abscess”. 15 key genes were identified. The results of KEGG enrichment analysis showed that I. stachyodes Lindl. is mainly involved in the regulatory mechanism of lung abscess by regulating VEGF signaling pathway, Rap1 signaling pathway, TNF signaling pathway, etc. Molecular docking results revealed that EGFR had the highest affinity for Fisetin; SRC had the highest affinity for Fisetin; PLCG1 had the highest affinity for 2-Naphthylamine; PIK3R1 had the highest affinity for Fisetin; and PTK2 had the highest affinity for Fisetin. Conclusion: The active ingredients of I. stachyodes Lindl may play a role in the treatment of lung abscess by affecting biological processes such as immune response, inflammatory response, and apoptosis.
Indigofera stachyodes Lindl.
血人参是豆科木蓝属植物茸毛木蓝(Indigofera stachyodes Lindl.)的干燥根部。这种植物在贵州苗族中被广泛使用,也被称为铁刷子《贵州民间方药集》、山红红苦刺《云南中草药》和雪人参。它的味道是甘的,稍带苦味,性质偏温,与肝、肾、大肠经有关。血人参具有滋阴补虚、调经摄血、活血舒筋的功效,主要用于治疗崩漏、体虚久痢、肠风下血、溃疡不敛、风湿痹痛、跌打损伤、肝硬化、疳积等疾病
血人参含有丰富的化学成分,目前已知主要有挥发油、甾醇体类、黄烷醇等
血人参是从贵阳市花溪区采集的,经过贵州中医药大学的魏升华教授的鉴定,被确定为豆科中的木蓝属植物,具体为茸毛木蓝(Indigofera stachyodes Lindl.),干燥根部入药。
1) 血人参药液制备:将称好重量的血人参药材加入8倍水(1 g/8 ml)浸泡30 min后大火煎煮,待水沸腾后小火再煎45 min,将药液过滤倒入量杯。上述操作继续加水煎煮第二次,待水沸腾后小火煎煮20分钟,过滤倒入量杯与一煎药液合并,并浓缩为1.0 g/ml的药液,装入50 ml离心管中后保存在4℃的冰箱。
将血人参的交集成分输入TCMSP数据库(
在GeneCards (
利用软件R (4.2.1)得到发热和MB的交集靶点,使用Cytoscape 3.9.1可视化活性化学成分与交集靶点之间的关系,以构建MB治疗发热的靶点调节网络。
我们首先将交集靶点导入到STRING (
对关键靶点进行富集分析,我们使用KEGG rest API (
从UniProt (
为了获取血人参的有效入血成分,对比分析空白大鼠血浆和灌胃给药后1 h和2 h采血组含药血浆筛出的成分,结果显示,二者有100和107个成分在交集之外(
以OB值 ≥ 30%作为条件筛选出11个活性成分(
MOL ID |
成分 |
OB |
MOL001831 |
Hypoxanthine |
52.29 |
MOL009132 |
3-Dehydroshikimate |
46.09 |
MOL013179 |
Fisetin |
52.6 |
MOL003504 |
4-Methylbenzaldehyde |
44.18 |
MOL001332 |
(R)-mandelic acid |
43.67 |
MOL010834 |
Phenyl acetate |
33.87 |
MOL000570 |
2-Naphthylamine |
39.82 |
MOL001788 |
Adenine |
62.81 |
MOL011381 |
Pyrrole-2-carboxylic acid |
78.72 |
MOL001332 |
Mandelic acid |
43.67 |
MOL002645 |
Phenylethylamine |
42.96 |
借助R语言的ggplot2包
将STRING中下载的TSV文件导入Cytoscape 3.10.2中,去除掉游离的靶点,获得PPI网络图(
我们将这6个关键目标点的蛋白质结构及其相应的化合物结构引入CB-dock2实时分析设备中,以进行分子级的对接工作。如
成分 |
MOL ID |
蛋白 |
Uniprot ID |
Vina score |
Fisetin |
MOL013179 |
EGFR |
P00533 |
−8.1 |
Phenyl acetate |
MOL010834 |
EGFR |
P00533 |
−5.8 |
Fisetin |
MOL013179 |
SRC |
P12931 |
−8.7 |
2-Naphthylamine |
MOL000570 |
PLCG1 |
P00533 |
−7.9 |
(R)-mandelic acid |
MOL001332 |
PLCG1 |
P00533 |
−5.7 |
Fisetin |
MOL013179 |
PIK3R1 |
P27986 |
−8.2 |
Fisetin |
MOL013179 |
PTK2 |
Q05397 |
−8.3 |
血人参含有丰富的化学成分,目前已知主要有挥发油、甾醇体类、黄烷醇等。根据前期研究表明,血人参药理作用广泛,如抑制氧化、降糖、降脂、保护肝脏等,本文章从血人参的药学成分出发,运用网络药理学的方法,探讨了血人参治疗肺痈的可行性及其可能的潜在机制。
根据药物–成分–靶点网络图可知,通过筛选得到11个有效成分,113个潜在靶点。为进一步得到关键靶标,进行了PPI网络分析及CytoHubba插件分析,筛选出了15个关键靶点(EGFR, SRC, PLCG1, PIK3R1, PTK2, KDR, RHOA, AKT1, MET, MMP9, TNF, CXCL8, PTGS2, ALB, PIK3CG)。通过对这15个关键靶点进行KEGG、GO功能富集分析。通过Score排列最终筛选出前5个关键靶点与其对应的化合物进行分子对接测试蛋白与配体相互作用的可靠性。
主要涉及VEGF信号通路、Rap1信号通路、TNF信号通路、ErbB信号通路以及EGFR酪氨酸激酶抑制剂等方面的15个关键靶点是通过KEGG分析得出的。GO的结果表明,我们所获得15个关键靶点主要参与了细胞运动的正向调节、上皮细胞的调节、细胞迁移、蛋白激酶B信号等生物学过程;基因主要定位在锚定连接、膜的侧面、细胞前缘、质膜的外源性成分等。根据文献资料,Rap1信号途径在众多关键的细胞活动中都有所体现,包括细胞的粘附、连接信息的传递与调节、细胞的迁移、极化,以及细胞的增长和生存
血人参活性成分与关键靶点之间展现出优异的结合性能,分子对接分析结果证实了这一现象。Fisetin与关键靶点(EGFR、SRC、PIK3R1和PTK2)的结合性和亲和力都比较高,通过查阅文献Fisetin具有多种药理学益处,包括抗炎、抗凋亡、抗氧化、抗肿瘤和抗血管生成作用
本研究使用网络药理学从多成分、多靶点和多途径的角度阐述了血人参治疗肺痈的作用机制。综上所述,血人参在抗炎症上的成分及靶点均明确且有效,其发挥作用的主要成分为Fisetin、Phenyl acetate、2-Naphthylamine和(R)-mandelic Acid,其作用靶点为EGFR、SRC、PLCG1、PIK3R1、PTK2。
贵州省省级科技计划项目(黔科合基础-ZK [2021]一般538);贵州省教育厅青年人才成长项目(黔教技[2022] 206);贵州省2023年大学生创新创业训练计划项目(S202310662011,贵中医大创合字(2023) 54号)。