Figure 3. Characterization and electrochemical testing of PtRu/PC-H; (A) Transmission electron microscopy; (B) Size distribution histogram; (C) XRD (D) EDS image; (E) XPS spectrum; (F) CV diagrams in 0.1 M HClO4 solution; (G) MOR in 0.5 M CH3OH + 0.1 M HClO4 solution at a scan rate of 50 mV·s−1; (H) Tafel curve of MOR in 0.1 M HClO4 solution containing 0.5 M CH3OH; (I) Current-time curves of MOR in 0.5 M CH3OH + 0.1 M HClO4 solution at a potential of 0.5 V [14]--图3. PtRu/PC-H的表征和电化学测试;(A) TEM图;(B) 尺寸分布直方图;(C) XRD图;(D) EDS图;(E) XPS图;(F) 0.1 M HClO4溶液中的CV图;(G) 0.5 M CH3OH + 0.1 M HClO4溶液在扫描速率为50 mV·s−1的MOR;(H) 在含有0.5 M CH3OH的0.1M HClO4溶液,MOR的Tafel曲线;(I) 在0.5 M CH3OH + 0.1 M HClO4溶液中电势为0.5 V下的MOR电流–时间曲线[14]--
Figure 4. Characterization and electrochemical testing of PtRu@WMC; (A) (B) (C) TEM image and size distribution histogram of PtRu@WMC-F7; (D) (E) XRD of PtRu supported on PtRu@WMCs with different pore sizes; (F) N2 adsorption-desorption curves of WMCs with different pore sizes; (G) CV in N2-saturated 0.5 M H2SO4 aqueous solution at a scan rate of 20 mV·s−1; (H) (I) Comparison of MOR in 1 M CH3OH and 0.5 M H2SO4 aqueous solution at 25℃ with a scan rate of 50 mV·s−1 for PtRu@WMC and PtRu@XC-72C [17]--图4. PtRu@WMC的表征和电化学测试;(A) (B) (C) PtRu@WMC-F7的TEM图;(D) (E) 不同孔径的WMCs负载PtRu的XRD;(F) 不同孔径PtRu@WMCs的N2吸附–脱附曲线;(G) 在N2饱和的0.5 M H2SO4水溶液中以20 mV∙S−1扫描速率的CV图;(H) (I) 在1.0 M CH3OH的0.5 M H2SO4水溶液中,在25℃下以50 mV∙s−1的扫描速率和PtRu@XC-72C的MOR比较[17]--
Figure 5. Characterization and electrochemical testing of PtRu@WMC; (A) (B) TEM image; (C) (D) XRD patterns of different catalysts; (E) Methanol stripping curves of anodes with various catalystsat 75℃ with Anode 1 M CH3OH; (F) (G) CV in 0.5 M H2SO4 + 1 M CH3OH at 25℃ with a scan rate of 20 mV·s−1 [20]--图5. PtRu@WMC的表征和电化学测试;(A) (B) TEM图像;(C) (D) 不同催化剂的XRD图;(E) 不同催化剂在75℃,阳极1 M CH3OH溶出曲线图;(F) (G) 在0.5 M H2SO4 + 1 M CH3OH中于25℃以20 mV·s−1为扫描速率的CV图[20]--3.2. Pd基催化剂
Figure 6. (A)~(C) Comparison of DMFCs performance for the supported Pd-based catalysts and the commercial Pt/C ETEK catalyst at 90°C feeding 2 M, 5 M and 10 M MeOH concentrations; (D) OCP values at 90°C and different methanol concentrations (1, 2, 5, 10 M) for the various MEAs; (E) Current density values at 0.3 V in chronoamperometric test at BOT and EOT [30]--图6. (A)~(C)负载型Pd基催化剂与商用Pt/C ETEK催化剂在90℃时DMFCs性能的比较,甲醇浓度分别为2 M、5 M和10 M;(D) 不同MEAs在90℃和不同甲醇浓度(1, 2, 5, 10 M)时的OCP值;(E) 在BOT和EOT时测时电流密度在0.3 V时的值[30]--
Figure 7. (A)~(C) SEM images of the Pd/NG-LCNT architecture; (D) XRD patterns of the Pd/NG-LCNT, Pd/G and GO materials; (E) Raman spectra of the GO, Pd/G, LCNT and Pd/NG-LCNT materials; (F) The CV curves of the Pd/NG-LCNT, Pd/G, Pd/ACNT and Pd/C electrodes in 0.5 M H2SO4 at 50 mV·s−1; (G) The corresponding ECSA values and mass activity of different catalysts in acidic media [31]--图7. (A)~(C) Pd/NG-LCNT结构的SEM图;(D) Pd/NG-LCNT、Pd/G和GO材料的XRD图谱;(E) GO、Pd/G、LCNT和Pd/NG-LCNT材料的拉曼光谱;(F) 0.5 M H2SO4中Pd/NG-LCNT、Pd/G、Pd/ACNT和Pd/C电极在50 mV·s−1扫描速率下的CV曲线;(G) 不同催化剂在酸性介质中对应的ECSA值和质量活度[31]--
Pd12P3.2纳米线是由Li等研究者们
[33]
利用一步法,制备出低Pt掺杂的纳米线(具有晶体/非晶异相结构,称为Pt-Pd12P3.2 NWs)用于MOR。这种独特晶体/非晶异相结构通过在相边界或界面处提供丰富的活性位点以及不同相之间协同效应来促进催化活性。此外,将少量Pt引入Pd晶格中可以改变电子结构并改善电子转移能力。因此,制备的Pt-Pd12P3.2 NWs在MOR电催化性能方面显示出更高效果,其质量活性为2.35 A mg Pd + Pt−1,是商业Pd/C (0.26 A mg·Pd−1)、Pd12P3.2 NWs (0.82 A mg·Pd−1)和商业Pt/C (1.19 A·mg·Pt−1)的9.0、2.9和2.0倍。高质量活性使Pt-Pd12P3.2 NWs成为MOR最前景的Pd基催化剂。
Figure 8. (A) SEM and (B) TEM images of Pd9Mo/rGO catalysts; (C) XRD pattern of PdMo/rGO catalyst and rGO; MOR properties of several materials: (D) CV curves of PdMo/rGO, Pd/rGO and commercial Pd/C in 0.5 mol·L−1 NaOH; (E) Mass-normalized CV curves in 0.5 mol·L−1 NaOH + 1 mol·L−1 CH3OH and (F) area-normalized CV curve; (G) Current density bar graph [34]--图8. Pd9Mo/rGO催化剂的(A) SEM图和(B) TEM图;(C) PdMo/rGO催化剂和rGO的XRD图谱;几种材料的MOR性能:(D) 0.5 mol·L−1 NaOH中PdMo/rGO、Pd/rGO和商业Pd/C的CV曲线;(E) 0.5 mol·L−1 NaOH + 1 mol·L−1 CH3OH 的质量归一化CV曲线和(F) 面积归一化CV曲线;(G) 电流密度柱状图[34]--
Pd/N-P-G复合催化剂是由Chen等人
[35]
利用水热法合成N和P双掺杂石墨烯(N-P-G)作为基底材料,采用简单化学还原法制备出一种Pd基纳米复合催化剂。Pd/N-P-G复合催化剂的合成过程如
图9(A)
所示,氮掺杂石墨烯(N-G)最初是以NH4OH为氮源制备的。N-G在磷酸(H3PO4)溶液中的水热处理导致N和P双掺杂石墨烯(N-P-G)的形成。以N-P-G为前驱体,通过在含PdCl2的溶液中进行化学还原,进一步制备了负载在N-P-G上的Pd纳米颗粒。如
图9(B)
、
图9(C)
,N-P-G呈二维片状结构,带有一些褶皱,粒径约为4.59 nm的Pd纳米颗粒均匀地分散在N-P-G表面。双掺杂通过整合N和P掺杂的优点,改善Pd纳米颗粒的分散性,增强Pd纳米颗粒与石墨烯的结合,提高Pd/N-P-G复合材料中金属Pd含量,产生协同效应。在甲醇氧化测试
图9(D)
、
图9(E)
中Pd/N-P-G显示最大峰值电流密度(108.6 mA ·cm−2),显著高于其他几种催化剂材料。Pd/N-P-G催化剂在3600 s测试周期内,在1 M KOH和1 M CH3OH中,电位为−0.2 V条件下催化电流密度为11.9 mA ·cm−2,优于其他几种材料,这得益于其独特的微观结构和N、P的双重掺杂,表现出优异的甲醇氧化电催化性能和稳定性。
Figure 9. (A) Illustration of the synthetic process for the Pd/N-P-G composite catalyst; (B) (C) TEM images of Pd/N-P-G; (D) CV and (E) CA in the solution with 1 M KOH and 1 M CH3OH solution for Pd/G, Pd/N-G, Pd/P-G and Pd/N-P-G catalysts [35]--图9. (A) Pd/N-P-G复合催化剂的合成过程图示;(B) (C) Pd/N-P-G的TEM图;Pd/G、Pd/N-G、Pd/P-G和Pd/N-P-G催化剂在1 M KOH和1 M CH3OH溶液中的(D) CV图和(E) CA图[35]--4. 总结与展望
References
Chu, S. and Majumdar, A. (2012) Opportunities and Challenges for a Sustainable Energy Future. Nature, 488, 294-303.
>https://doi.org/10.1038/nature11475
Kamarudin, S.K., Achmad, F. and Daud, W.R.W. (2009) Overview on the Application of Direct Methanol Fuel Cell (DMFC) for Portable Electronic Devices. International Journal of Hydrogen Energy, 34, 6902-6916.
>https://doi.org/10.1016/j.ijhydene.2009.06.013
Shrivastava, N.K., Thombre, S.B. and Chadge, R.B. (2015) Liquid Feed Passive Direct Methanol Fuel Cell: Challenges and Recent Advances. Ionics, 22, 1-23.
>https://doi.org/10.1007/s11581-015-1589-6
Coutanceau, C., Koffi, R.K., Léger, J.-M., Marestin, K., Mercier, R., Nayoze, C., et al. (2006) Development of Materials for Mini DMFC Working at Room Temperature for Portable Applications. Journal of Power Sources, 160, 334-339.
>https://doi.org/10.1016/j.jpowsour.2006.01.073
Ren, X., Wilson, M.S. and Gottesfeld, S. (1996) High Performance Direct Methanol Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 143, L12-L15.
>https://doi.org/10.1149/1.1836375
Yaqoob, L., Noor, T. and Iqbal, N. (2020) Recent Progress in Development of Efficient Electrocatalyst for Methanol Oxidation Reaction in Direct Methanol Fuel Cell. International Journal of Energy Research, 45, 6550-6583.
>https://doi.org/10.1002/er.6316
Yu, K., Ning, G., Yang, J., Wang, Y., Zhang, X., Qin, Y., et al. (2019) Restructured PtNi on Ultrathin Nickel Hydroxide for Enhanced Performance in Hydrogen Evolution and Methanol Oxidation. Journal of Catalysis, 375, 267-278.
>https://doi.org/10.1016/j.jcat.2019.06.006
Wu, Q.N., Wen, J.H., Wen, M., Wu, Q.S. and Fu, Y.Q. (2018) Bioinspired Sea-Sponge Nanostructure Design of Ni/Ni(HCO
3)
2-on-C for a Supercapacitor with a Superior Anti-Fading Capacity. Journal of Materials Chemistry A, 6, 15781-15788.
>https://doi.org/10.1039/c8ta05303k
Hacquard, A. (2005) Improving and Understanding Direct Methanol Fuel Cell (DMFC) Performance.
Zerbinati, O., Mardan, A. and Richter, M.M. (2002) A Direct Methanol Fuel Cell. Journal of Chemical Education, 79, 829-831.
>https://doi.org/10.1021/ed079p829
Joghee, P., Malik, J.N., Pylypenko, S. and O’Hayre, R. (2015) A Review on Direct Methanol Fuel Cells—In the Perspective of Energy and Sustainability. MRS Energy&Sustainability, 2, Article No. 3.
>https://doi.org/10.1557/mre.2015.4
Zuo, Y., Sheng, W., Tao, W. and Li, Z. (2022) Direct Methanol Fuel Cells System—A Review of Dual-Role Electrocatalysts for Oxygen Reduction and Methanol Oxidation. Journal of Materials Science&Technology, 114, 29-41.
>https://doi.org/10.1016/j.jmst.2021.10.031
Ren, X., Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., et al. (2020) Current Progress of Pt and Pt-Based Electrocatalysts Used for Fuel Cells. Sustainable Energy&Fuels, 4, 15-30.
>https://doi.org/10.1039/c9se00460b
Zhang, J., Qu, X., Han, Y., Shen, L., Yin, S., Li, G., et al. (2020) Engineering PtRu Bimetallic Nanoparticles with Adjustable Alloying Degree for Methanol Electrooxidation: Enhanced Catalytic Performance. Applied Catalysis B: Environmental, 263, Article ID: 118345.
>https://doi.org/10.1016/j.apcatb.2019.118345
Liu, Z., Shi, Q., Peng, F., Wang, H., Zhang, R. and Yu, H. (2012) Pt Supported on Phosphorus-Doped Carbon Nanotube as an Anode Catalyst for Direct Methanol Fuel Cells. Electrochemistry Communications, 16, 73-76.
>https://doi.org/10.1016/j.elecom.2011.11.033
Huang, T., Zhang, D., Xue, L., Cai, W. and Yu, A. (2009) A Facile Method to Synthesize Well-Dispersed PtRuMoO
x and PtRuWO
x Nanoparticles and Their Electrocatalytic Activities for Methanol Oxidation. Journal of Power Sources, 192, 285-290.
>https://doi.org/10.1016/j.jpowsour.2009.03.037
Liu, W., Qin, X., Zhang, X., Shao, Z. and Yi, B. (2017) Wormhole-Like Mesoporous Carbon Supported PtRu Catalysts toward Methanol Electrooxidation. Journal of Energy Chemistry, 26, 200-206.
>https://doi.org/10.1016/j.jechem.2016.08.003
Hao, Y., Wang, X., Zheng, Y., Shen, J., Yuan, J., Wang, A., et al. (2016) Uniform Pt Nanoparticles Incorporated into Reduced Graphene Oxides with MoO
3 as Advanced Anode Catalysts for Methanol Electro-Oxidation. Electrochimica Acta, 198, 127-134.
>https://doi.org/10.1016/j.electacta.2016.03.054
He, C., Song, S., Liu, J., Maragou, V. and Tsiakaras, P. (2010) Koh-Activated Multi-Walled Carbon Nanotubes as Platinum Supports for Oxygen Reduction Reaction. Journal of Power Sources, 195, 7409-7414.
>https://doi.org/10.1016/j.jpowsour.2010.05.050
Guo, J., Sun, G., Shiguo, S., Shiyou, Y., Weiqian, Y., Jing, Q., et al. (2007) Polyol-Synthesized PtRu/C and PtRu Black for Direct Methanol Fuel Cells. Journal of Power Sources, 168, 299-306.
>https://doi.org/10.1016/j.jpowsour.2007.02.085
Zhang, X. and Chan, K. (2002) Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties. Chemistry of Materials, 15, 451-459.
>https://doi.org/10.1021/cm0203868
Dickinson, A.J., Carrette, L.P.L., Collins, J.A., Friedrich, K.A. and Stimming, U. (2004) Performance of Methanol Oxidation Catalysts with Varying Pt:Ru Ratio as a Function of Temperature. Journal of Applied Electrochemistry, 34, 975-980.
>https://doi.org/10.1023/b:jach.0000042668.61391.a4
Zhang, X., Wang, J. and Zhao, Y. (2023) Enhancement Mechanism of Pt/Pd-Based Catalysts for Oxygen Reduction Reaction. Nanomaterials, 13, Article No. 1275.
>https://doi.org/10.3390/nano13071275
Li, C., Shan, G., Guo, C. and Ma, R. (2023) Design Strategies of Pd-Based Electrocatalysts for Efficient Oxygen Reduction. Rare Metals, 42, 1778-1799.
>https://doi.org/10.1007/s12598-022-02234-4
Xia, Z., Xu, X., Zhang, X., Li, H., Wang, S. and Sun, G. (2020) Anodic Engineering Towards High-Performance Direct Methanol Fuel Cells with Non-Precious-Metal Cathode Catalysts. Journal of Materials Chemistry A, 8, 1113-1119. >https://doi.org/10.1039/c9ta11440h
Qian, H., Huang, H. and Wang, X. (2015) Design and Synthesis of Palladium/Graphitic Carbon Nitride/Carbon Black Hybrids as High-Performance Catalysts for Formic Acid and Methanol Electrooxidation. Journal of Power Sources, 275, 734-741.
>https://doi.org/10.1016/j.jpowsour.2014.10.109
Chakraborty, S. and Retna Raj, C. (2010) Electrocatalytic Performance of Carbon Nanotube-Supported Palladium Particles in the Oxidation of Formic Acid and the Reduction of Oxygen. Carbon, 48, 3242-3249.
>https://doi.org/10.1016/j.carbon.2010.05.014
Huang, H. and Wang, X. (2013) Design and Synthesis of Pd-MnO
2 Nanolamella-Graphene Composite as a High-Performance Multifunctional Electrocatalyst towards Formic Acid and Methanol Oxidation. Physical Chemistry Chemical Physics, 15, 10367-10375.
>https://doi.org/10.1039/c3cp51569a
Yang, Y., Huang, H., Shen, B., Jin, L., Jiang, Q., Yang, L., et al. (2020) Anchoring Nanosized Pd on Three-Dimensional Boron-and Nitrogen-Codoped Graphene Aerogels as a Highly Active Multifunctional Electrocatalyst for Formic Acid and Methanol Oxidation Reactions. Inorganic Chemistry Frontiers, 7, 700-708.
>https://doi.org/10.1039/c9qi01448a
Lo Vecchio, C., Sebastián, D., Alegre, C., Aricò, A.S. and Baglio, V. (2018) Carbon-Supported Pd and Pd-Co Cathode Catalysts for Direct Methanol Fuel Cells (DMFCS) Operating with High Methanol Concentration. Journal of Electroanalytical Chemistry, 808, 464-473.
>https://doi.org/10.1016/j.jelechem.2017.02.042
Ren, J., Zhang, J., Yang, C., Yang, Y., Zhang, Y., Yang, F., et al. (2020) Pd Nanocrystals Anchored on 3D Hybrid Architectures Constructed from Nitrogen-Doped Graphene and Low-Defect Carbon Nanotube as High-Performance Multifunctional Electrocatalysts for Formic Acid and Methanol Oxidation. Materials Today Energy, 16, Article ID: 100409.
>https://doi.org/10.1016/j.mtener.2020.100409
Ali, A. and Shen, P.K. (2019) Recent Advances in Graphene-Based Platinum and Palladium Electrocatalysts for the Methanol Oxidation Reaction. Journal of Materials Chemistry A, 7, 22189-22217.
>https://doi.org/10.1039/c9ta06088j
Li, Q., Wan, T., Yang, X., Xiang, D., Yuan, X., Sun, Z., et al. (2022) Low Pt-Doped Crystalline/amorphous Heterophase Pd
12P
3.2 Nanowires as Efficient Catalysts for Methanol Oxidation. Inorganic Chemistry, 61, 12466-12472.
>https://doi.org/10.1021/acs.inorgchem.2c02055
Li, M., Shi, J., Guo, X., Ying, Y., Wu, Y., Wen, Y., et al. (2023) PdMo Supported by Graphene for Synergistic Boosting Electrochemical Catalysis of Methanol Oxidation. Journal of Electroanalytical Chemistry, 928, Article ID: 117038.
>https://doi.org/10.1016/j.jelechem.2022.117038
Chen, D., He, Z., Pei, S., Huang, L., Shao, H., Jin, Y., et al. (2019) Pd Nanoparticles Supported on N and P Dual-Doped Graphene as an Excellent Composite Catalyst for Methanol Electro-Oxidation. Journal of Alloys and Compounds, 785, 781-788.
>https://doi.org/10.1016/j.jallcom.2019.01.246