japc Journal of Advances in Physical Chemistry 2168-6122 2168-6130 beplay体育官网网页版等您来挑战! 10.12677/japc.2024.134071 japc-101152 Articles 化学与材料 高机械强度相变材料研究进展
Research Progress of High Mechanical Strength Phase Change Materials
1 马伟杰 1 2 周子涵 1 1 曹宇锋 1 南通大学化学化工学院,江苏 南通 梦百合家居科技股份有限公司,江苏 如皋 14 11 2024 13 04 699 712 2 9 :2024 15 9 :2024 15 11 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 有机相变材料在先进的潜热储存(LHS)系统中发挥了巨大作用。然而,有机相变材料因其机械强度较差而在进一步的工业应用中受到限制。随着有机相变材料在电子器件、智能织物、生命健康等领域的深入发展,进一步提升有机相变材料的机械强度,满足不同使用场景已变得至关重要。本文详细归纳了近年来提高有机相变材料机械强度的方法,预期为进一步设计与制备高强度相变材料提供参考。
Organic phase change materials (PCMs) have played a key role in the advanced latent heat storage (LHS) systems. However, organic phase change materials are limited in further industrial applications because of their poor mechanical strength. Recently, organic PCMs have been increasingly applied in electron devices, smart fabrics and life science, and other cutting-edge fields, requiring further enhanced their mechanical strength. This review will offer a possible guidance for the preparation of high mechanical strength PCMs in the advanced LHS systems, providing valuable insights for further development.
定形相变材料,聚合物基固–固相变材料,高机械强度
Form-Stable Phase Change Materials
Polymeric Solid-Solid Phase Change Materials High Mechanical Strength
1. 引言

有机相变材料(Phase change materials, PCMs)是一类通过固–液相变实现热能存储与释放的材料 [1] ,其工作原理如 图1 所示。有机PCMs如石蜡、脂肪酸、脂肪醇以及聚乙二醇(PEG)等在深空探测 [2] 、军事技术 [3] - [5] 、生命科学 [6] [7] 、电子设备 [8] 和太阳能热利用 [9] - [11] 等各种战略和前沿领域得到了广泛应用。然而,有机PCMs在发生固–液相变时易发生泄漏问题,严重时会导致器件污染与损毁,因此,这一问题严重阻碍了它的高级水平发展 [12] - [15] 。针对上述问题,目前有两种解决方法,一种是采用物理或化学法将有机PCMs封装在支撑材料中制成定形相变材料(Form-stable PCMs, FPCMs) [16] - [19] ,来解决泄漏问题。但是,这种策略得到的FPCMs机械强度较差,在一些方面应用受限。因此,通过化学反应将有机PCMs引入聚合物的主链或侧链之中,得到高机械强度的聚合物基固–固相变材料(Polymeric solid-solid PCMs, SSPCMs)成了当前的研究热点 [20]

Figure 1. a) Temperature-thermal diagram during solid-liquid phase transformation and b) Characteristics of solid-liquid phase transformation [1]--图1. a) 固–液相变过程中温度–热能图与b) 固–液相变的特点[1]--

SSPCMs作为有机PCMs的一种极具吸引力的替代品,由于其独特的性能,比如固态加工,无需封装或额外的支撑材料,以及优异的机械性能,正受到人们越来越多的关注 [13] [21] [22] 。SSPCMs的相变原理主要是基于相变单元晶体结构的变化,如 图2 所示,在相变温度附近,SSPCMs的晶体结构会在不同的有序状态之间转变,或者是无序与有序之间的转变 [13] 。这种结构的变化通常伴随着能量的吸收或释放,从而实现对热能的储存和释放功能。本文从增强相变材料机械强度的角度出发,系统归纳了不同的增强策略,旨在为相关领域研究人员在如何提高相变材料机械性能方面提供更深层次的理解与参考,并对其未来发展方向进行了展望。

Figure 2. Phase transition process of SSPCMs [18]--图2. SSPCMs的相变过程[18]--
2. 定形相变材料

定形相变材料(FPCMs)与传统有机PCMs相比,具有无泄漏、过冷度小、导热系数高和热稳定性好等优点 [23] 。根据FPCMs的形貌和储热机理不同,常用的制备方法可归纳为以下两种:一种是物理混合法,包括机械混合、自扩散、熔融浸渍和真空浸渍等;另一种是微胶囊封装法,包括乳液聚合 [24] - [26] 、界面聚合 [27] 和原位聚合等 [28] [29] 。物理混合法是当前最常用的FPCMs制备技术,通过将有机PCMs与固体填料或多孔材料进行物理混合或吸附来制备FPCMs。然而,物理混合法难以保证有机PCMs与固体填料或多孔材料均匀混合,而且引入的固体填料或多孔材料还会降低FPCMs的储能密度。相比之下,将有机PCMs作为芯材封装在固态微壳中构建“核–壳”结构的定形相变微胶囊,可以有效隔断有机PCMs与环境的接触,解决有机PCMs的腐蚀、降解、相分离和过冷等问题。

2.1. 多孔基定形相变材料的制备及机械性能

多孔基定形相变材料是将熔融态有机PCMs约束在支撑材料丰富的微孔结构内部,稳定的多孔支撑材料能够确保相变过程中有机PCMs体积反复变化而不发生明显的结构破坏和液态泄漏,从而保证FPCMs在宏观上维持固体的形状。多孔支撑材料应具有以下特点:1) 自身孔隙结构丰富,能够为容纳相变材料提供大量空间;2) 与相变材料之间不发生化学反应,相容性较好;3) 热稳定性好,在相变温度范围能够保持稳定的固体形状。常见的多孔支撑材料除了金属泡沫、石墨烯气凝胶、碳纳米管(CNTS) [30] 、介孔二氧化硅和分层多孔聚合物外,还包括膨胀石墨、膨胀珍珠岩、蒙脱土、硅藻土、蛭石和凹凸棒黏土等 [31] [32]

在100℃以下,多孔基定形相变材料的多孔支撑材料能保持稳定的固体形状并能较好地限制有机PCMs [33] - [35] 。有机PCMs在定形前后的相变温度变化较小,相变潜热与多孔支撑材料对有机PCMs的负载量有关,负载量越大则定形相变材料储热特性越显著 [36] 。膨胀石墨具有轻质、吸附性高、可压缩性强的蠕虫孔隙结构而表现出优异的负载性能 [33] 。Cai等人 [36] 将膨胀石墨(EG)、石蜡与热塑性弹性体(TPE)混合后热压成型,制备了一种柔性定形相变材料。如 图3(a) 图3(b) 所示,当EG添加量为7%、石蜡为63%,TPE为30%时,柔性FPCMs的抗压强度达到2.1 MPa,热导率达到2.2 W/(m∙K),但是,此时TPE无法完全包裹EG与PCM,断裂伸长率下降至11%。另一方面,如 图3(c) 所示,Lee等人 [37] 首先利用3D打印技术制备了一种具有八元桁架结构的支撑材料,再通过冷冻干燥将石墨烯气凝胶(GA)填充到八元桁架结构之中,最后将石蜡作为相变材料在真空渗透作用下制备一种定形相变材料(3D-MPGA)。如 图3(d) 所示,在25℃下,3D-MPGA的抗压强度达到了~5.27 MPa,负载石蜡的石墨烯气凝胶(PGA)的抗压强度仅为~0.18 MPa,而且3D-MPGA在70℃下的抗压强度更是提高了5000%以上。同时,由于GA的抗压能力较差,在抗压测试中仅由石蜡支撑PGA,因而显示出几乎平坦的应力–应变曲线。3D-MPGA虽然结构发生了变化,但是其潜热与PGA相比仅下降了3.44%,约为167.35 J/g。Hu等人 [38] 首先采用定向冷冻干燥法制备了一种弹性优异的WPU@MXene气凝胶,再通过真空浸渍法将PEG锁定在多孔WPU@MXene气凝胶的孔道之中,获得了一种自修复柔性定形相变材料,制备过程如 图3(e) 所示。如 图3(f) 图3(g) 所示,原始样品的抗拉强度和伸长率分别为0.152 MPa和15.8%,而修复后样品的抗拉强度和伸长率分别为0.15 MPa和13.1%,说明该柔性定形相变材料不仅具有较好的自修复性能,而且机械性能也比较优异。

Figure 3. a) Tensile strength and b) tensile strain at break of EG/OP70-TPE [36]; c) Compressive stress-strain curves of PGA and 3D-MPGA at 70℃ [37]; d) Design schematic diagram of 3D-MPGA [37]; e) Preparation process of WPU@MXene aerogel [38]; f) Tensile stress-strain curves of the original and healed samples and g) POM images of the self-healed samples [38]--图3. EG/OP70-TPE的a) 抗拉强度和b) 断裂拉伸应变[36];c) 70℃下PGA和3D-MPGA的压应力–应变曲线[37];d) 3D-MPGA的设计原理图[37];e) WPU@MXene气凝胶的制备过程[38];f) 原始和愈合样品的拉伸应力–应变曲线和g) 样品自愈合的POM图像[38]--
2.2. 聚合物基定形相变材料的制备及机械性能

图4(a) 所示,Deng等人 [39] 利用PEG和六亚甲基二异氰酸酯(HDI)的交联反应,制备了一种具有高导热性能的多功能柔性定形相变材料。如 图4(b) 图4(c) 所示,PEAC2的抗拉性能极差,抗拉强度仅为0.34 MPa;但是PH的抗拉强度达到了1.48 MPa,比PEAC2提高了435%。这是由于软链PEG的存在,使分子链的旋转运动增大,增加了PEAC2的柔韧性,结果导致PH的抗拉强度显著提高。另外,氮化铝(AIN)和碳纳米管(CNT)也可以增加柔性定形相变材料的连接位点,在材料之间建立更强的交联结构,可以进一步提高PHAC的抗拉强度。Ge等人 [40] 设计了一种由单壁碳纳米管(SWCNT)、聚二甲基硅氧烷(PDMS)为基体,PEG为相变材料的柔性定形相变材料(SPP)。如 图4(d) 所示,压缩试验表明,SPP 可以承受至少60%的压力应变,抗压强度大约在1.8 MPa左右,并且在释放应力后可恢复到原来的形状。同时,如 图4(e) 所示,SPP 可以在50%应变下连续进行100次循环压缩后依旧表现出良好的抗疲劳性能。此外,在不影响机械性能和防泄漏性能的前提下,当PEG负载量达到70 vol%时,SPP 的潜热储存密度超过110 J/g。

Figure 4. a) Synthesis diagram of multi-functional flexible shaped phase change materials, b) tensile stress-strain curves of different samples and c) fracture photos of different samples [39]; d) Stress-strain curve of SPP and e) cyclic stress-strain curve of SPP [40]--图4. a) 多功能柔性定形相变材料的合成示意图、b) 不同试样的拉伸应力–应变曲线与c) 不同试样的断口照片[39];d) SPP的应力–应变曲线和e) 循环应力–应变曲线[40]--
2.3. 微胶囊定形相变材料的制备及机械性能

微胶囊技术通过在相变芯材外表面形成壳材,从而得到具有核–壳结构的微胶囊定形相变材料(MPCMs),通过阻隔相变芯材与环境的直接接触,解决液态相变材料的泄漏问题。理想的壳材应保持高机械强度与导热性、化学稳定等特点。相变芯材比例越高,储热性能越好,但是在一定程度上会使得MPCMs的结构稳定性与机械强度降低。如 图5(a) 所示,Jiang等人 [41] 首先以正十八烷为芯材,SiO2/BN为杂化壳层制备了一种微胶囊定形相变材料(BN-MPCMs),再将BN-MPCMs分散在含有微量绿色分散剂CNF的环氧树脂中,得到了一种具有双重储热和导热功能的EBM-C复合定形相变材料。如 图5(b) 图5(c) 所示,当CNF含量从1 wt%增加至3 wt%时,EBM-C的抗弯强度会随CNF含量的增加而增加,而且与未添加CNF的材料相比,EBM-C弯曲模量也会显着增加。Yan等人 [42] 首先以Pickering乳液为模板对正十四烷进行封装,制备出一种性能优异的MPCMs,再采用冷冻干燥技术将MPCMs与CNF/PVA凝胶进行复合制备了一种相变复合气凝胶。研究表明,MPCMs的引入并没有显著影响气凝胶的轻质特性,而且相变复合气凝胶的相变焓值达到104 J/g。与纯PVA-CNF气凝胶相比,相变复合气凝胶表现出了优异的机械性能。如 图5(d) 所示,PVA-CNF/MPCM-50在50%应变下的压缩应力达到0.534 MPa,比PVA-CNF和PVA-CNF/正十四烷分别增加了6.6倍和2.5倍。同时,如 图5(e) 所示,PVA-CNF/MPCM-50可以支撑其自身重量数千倍(1公斤)的重物。与此同时,Sara等 [43] 采用悬浮聚合法制备了一种椰子油–甲基丙烯酸甲酯微胶囊定形相变材料(MPCMs),该MPCMs的相变潜热和相变温度分别为39.1 J/g和22.1℃,相变材料负载率为36.37%。

另一方面,界面聚合法通常采用聚氨酯或聚脲等为囊壁,成本较低、操作简单,且对反应单体纯度要求不高。但是,要求壳材反应活性较高,而且囊壁的大小直接影响MPCMs的机械性能。Chen等 [44] 基于界面缩聚法制备了粒径为20~35 μm且具有良好热稳定性的硬脂酸丁酯/聚脲微胶囊定形相变材料(MPCMs)。该MPCMs的相变材料负载率为80%,相变潜热和相变温度分别为80 J/g和29℃。Nikpourian等 [45] 采用界面缩聚法,利用聚氨酯包封石蜡制备了负载率为80.2%的微胶囊定形相变材料,热循环实验表明经过100次加热/冷却循环后,该微胶囊仍能够保持稳定的热存储和释放能力。但是,由于微胶囊存在壳材与结构限制,机械强度、导热性、热稳定性等缺点显而易见,一定程度上限制它的实际应用范围。

Figure 5. a) Preparation process of EBM-C composites [41]; b) Stress-strain curve of EBM-C composites and c) columnar statistical diagram of bending strength and bending modulus [41]; d) Stress-strain curve of PVA-CNF and other materials [42]; e) VA-CNF/MPCM-50 bearing test (1 kg) [42]--图5. a) EBM-C复合材料的制备过程图[41];b) EBM-C复合材料的应力–应变曲线与c) 弯曲强度与弯曲模量的柱状统计图[41];d) PVA-CNF等材料的应力–应变曲线[42];e) VA-CNF/MPCM-50的承重试验(1 kg) [42]--
3. 聚合物基固–固相变材料

聚合物基固–固相变材料可通过接枝、嵌段、交联和超支化等化学方法,将脂肪酸、脂肪醇以及PEG等引入聚合物的主链或侧链之上,得到形状稳定、高机械强度的聚合物基固–固相变材料(SSPCMs)。长期以来,人们利用共价键,动态共价键和非共价键等作用来进行SSPCMs的设计与制备,通过不同的键合方式与分子间作用实现SSPCMs结构与性能之间的调节。

3.1. 基于共价键的SSPCMs制备及机械性能 Figure 6. a) Working principle of phase transition of MTPEG material and b) stress-strain curve of MTPEG [46]; c) Synthesis roadmap of SSPCMs, d) stress-strain curve of SSPCMs [47]; e) Structural diagram of PTPCMs, f) stress-strain curves of PTPCM-1, PTPCM-2 and PTPCM-3 [22]; g) Digital pictures of PTPCM-2 flexibility display and h) thermal cycle stability test [22]--图6. a) MTPEG材料的相变工作原理和b) MTPEG的应力–应变曲线[46];c) SSPCMs的合成路线图、d) SSPCMs的应力–应变曲线[47];e) PTPCMs的结构示意图、f) PTPCM-1、PTPCM-2和PTPCM-3的应力–应变曲线[22];g) PTPCM-2柔韧性展示的数码图片与h) 热循环稳定性测试[22]--

通过化学反应将脂肪酸、脂肪醇以及PEG等引入聚合物的主链或侧链之上,由于SSPCMs自身的分子结构特性,因而可以显著SSPCMs的机械性能。如 图6(a) 所示,Kou等人 [46] 将三聚氰胺、甲苯-2,4-二异氰酸酯(TDI)与PEG进行缩聚反应,合成了一种具有较高机械强度和储能密度的本征柔性固–固相变薄膜(MTPEG)。如 图6(b) 所示,制得的MTPEG薄膜不仅相变焓值达到了118 J/g,而且断裂强度和断裂伸长率分别达到了10.7 MPa和8.2%,同时还兼具了良好的热循环稳定性(>1000次)。如 图6(c) 所示,Cui等人 [47] 利用1,5-二羟基萘(DN)分子的光吸收性能,将PEG,二苯基甲烷二异氰酸酯(MDI)与DN利用缩聚反应制得了一种具有高抗拉强度和光热转换性能的SSPCMs,PEG作为相变组分来存储和释放热能,DN赋予SSPCMs本征的光热转换特性。另一方面,如 图6(d) 所示,由于DN和MDI本身具有较好的刚性,这使得SSPCMs的机械韧性最高可达193 MJ/m3,拉伸强度与断裂伸长率也分别达到40.4 MPa与1016%。此外,Yang等人 [22] 将不同分子量的PEG、异佛尔酮二异氰酸酯(IPDI)、对苯醌二肟(BQDO)通过聚合反应制备了一种聚氨酯基光热相变材料(PTPCMs),分子结构如 图6(e) 所示。由于PTPCMs具有稳定的交联网络结构,使得PTPCMs表现出优异的机械性能,如 图6(f) 图6(g) 所示,在拉伸测试中发现,PTPCMs的韧性达到了149.32 MJ/m3,而且表现出优异的可弯曲与可扭转能力。同时,如 图6(h) 所示,PTPCM有着优异的热稳定性能,对比第1次和第5次热循环之后的储放热性能,发现其曲线几乎保持一致。

3.2. 基于动态共价键的SSPCMs制备及机械性能 Figure 7. a) Synthesis diagram of PEG4K-Bx-PEG6K and b) stress-strain curve of PEG4K-Bx-PEG6K [54]; c) Schematic diagram of preparation of FPCMs and d) stress-strain curves of PCM and FPCMs [55]; e) stress-strain curves of shPMM-HA-40%~60%; stress-strain curves of f) ShPMM-DA-40%~60% and g) ShPMM-DA-60%, SHPMM-HA-60%, ShPMM-TA-60% [56]--图7. a) PEG4K-Bx-PEG6K的合成示意图与b) PEG4K-Bx-PEG6K的应力–应变曲线[54];c) FPCMs的制备示意图与d) PCM与FPCMs的应力–应变曲线[55];e) SHPCM-HA-40%~60%、f) SHPCM-DA-40%~60%与g) SHPCM-DA-60%,SHPCM-HA-60%,SHPCM-TA-60%的应力–应变曲线[56]--

动态共价键是指在一定的条件下发生可逆断裂与复原的化学键,包括硼氧六元环 [48] [49] 、Diels-Alder反应 [50] [51] 、二硫键 [52] [53] 等。从原理上来说,所有的化学反应都具有一定的可逆性,但是,由于化学键键能的不同,化学反应的可逆程度大相径庭。如 图7(a) 图7(b) 所示,Cao等人 [54] 利用动态硼氧键与氢键作用制备了一种断裂强度高达~22.90 MPa、断裂伸长率可达~733.62%、同时韧性达~120.05 MJ/m3的超分子固–固相变材料(PEG4K-Bx-PEG6K)。同时,将石墨烯纳米片(GNs)引入PEG4K-Bx-PEG6K中,通过压力诱导使GNs定向排列,获得了一种具有定向高导热性能的光热复合相变材料。当GNs负载为5 wt.%时,光热复合相变材料的导热系数达到了3.639 W/mK,并实现了太阳能与热能的快速转换与储存。如 图7(c) 所示,Du等人 [55] 利用Diels-Alder反应制备出一种具有可回收、可自愈以及阻燃性能的新型动态交联超分子FPCMs。如 图7(d) 所示,从应力–应变曲线上可以看出,FPCMs与PCM均表现出典型的半结晶聚合物的应力–应变趋势。随着马来酰亚胺与呋喃基团摩尔比的增加,FPCMs的极限拉伸强度不断增加,其中FPCM-3和FPCM-4的极限拉伸强度分别达到了18.8和19.8 MPa,这一结果表明,FPCMs中产生的Diels-Alder动态交联结构有效地增强了超分子FPCMs的链纠缠,从而有效地增强了它的机械性能。除了将PEG引入聚合物链上,Wei等人 [56] 将脂肪醇作为相变组分引入由动态二硫键(Dynamic disulfide)交联的聚氨酯网络中,得到了一种具有半互穿网络结构的自修复相变材料(SHPCMs)。研究发现,通过调节脂肪醇的类型和含量可以实现SHPCMs的相变温度与相变焓值的调节。同时,如 图7(e)~(g) 所示,由于半互穿网络结构的优势,SHPCMs还可以通过不同的调节手段,来实现断裂强度(1.23~6.16 MPa)与断裂伸长率(5.77%~379.48%)的可控调节。

<xref></xref>3.3. 基于非共价键的SSPCMs制备及机械性能

除了基于共价键与动态共价键构筑SSPCMs之外,利用非共价键作用来实现SSPCMs的设计与制备也是常用的方法之一。非共价键作用种类较多,主要包括氢键 [57] [58] ,π-π堆叠 [59] 和金属配位键 [60] [61] 等。氢键是最常见的非共价键作用力,当氢原子与O、N、S等接近时,即可产生氢键。氢键的大小也会因原子的电负性及分子结构不同而有较大的变化,从而会使SSPCMs表现出不同的机械性能。Wang等人 [58] 将PEG、HDI与扩链剂2-脲基-4-嘧啶(UPy)通过缩聚反应得到了一种具有多重氢键作用的超分子固–固相变材料(MHPCMs),它的工作机制与氢键作用方式如 图8(a) 所示。在MHPCMs结构中,UPy与UPy会形成强氢键作用,酰基氨基脲和氨基甲酸酯之间会形成弱氢键作用,多重的氢键作用下,在分子结构中会形成增强的物理交联点,如 图8(b) 所示,使得MHPCMs的断裂强度达到36.9 MPa、断裂伸长率高达1200%,而且,即使当PEG的含量达到97 wt%时,MHPCMs也能在120℃下保持形状稳定。当PEG的含量为85 wt%时,随着PEG的分子量从4 K增加到20 K,MHPCMs的断裂强度相应地会从39.3 MPa增加到46.9 MPa,这是因为随着分子量的增加,氢键含量也相应增加。该策略为制备具有高机械强度的SSPCMs提供了一种可行的方法。

Tian等人 [57] 利用PEG、二苯基甲烷二异氰酸酯(MDI)和4,4-双苯酚(BP)的嵌段共聚反应制备了一种超分子固–固相变材料,其工作机理如 图8(c) 所示。引入的刚性苯环基团会在分子链间形成π-π堆积层和氢键作用,如 图8(d) 所示,当分子链间π-π堆积相互作用增强时,超分子固–固相变材料的断裂强度可达32.9 MPa,断裂伸长率超过1223%,而且韧性也达到了172.4 MJ/m3。此外,如 图8(e) 所示,该超分子固–固相变材料还展现出优异的热能存储与释放性能。Meng等人 [60] 利用乙烯丙烯酸共聚物(EAA)、硬脂酸(SA)与锌离子(Zn2+)之间的动态配位作用制备了一种相变超分子材料(EAA-Zn-SA),并且通过引入石墨烯纳米片赋予EAA-Zn-SA优异的光热转化性能。如 图8(f) 图8(g) 所示,由于Zn2+与羧酸基团之间的金属配位作用,在一定程度上赋予了EAA-Zn-SA优异的自修复性能。在70℃下加热120 min,修复后的EAA-Zn-SA,断裂强度可达3.568 MPa,断裂伸长率超过20%,其修复效率高达97.62 ± 4.29%。同时,如 图8(h) 所示,EAA-Zn-SA还具有优异的热稳定性能,在经过500次热循环之后,依旧表现出优异的热能存储与释放性能,这项工作为进一步设计与开发下一代智能相变材料提供了一种新思路。

Figure 8. a) Working mechanism of MHPCMs and mode of hydrogen bonding and b) Stress-strain curve of MHPCMs [58]; c) π-π stacking and hydrogen bonding between molecular chains, d) stress-strain curves of HPCMM-4K, BPCMM-4K, BPCMM-8K, BPCMM-20K, e) DSC curves of HPCMM-4K, BPCMM-4K, BPCMM-8K, BPCMM-20K and PMM-4K [57]; f) Metal coordination mechanism of EAA-Zn-SA, g) stress-strain curves of EAA-Zn-SA at different repair times at 70 oC, e) DSC curves of EAA-Zn11-SA-GN before and after 500 thermal cycles [60]--图8. a) MHPCMs的工作机制与氢键作用方式b) MHPCMs的应力–应变曲线[58];c) 分子链间π-π堆积层和氢键作用、d) HPCM-4K、BPCM-4K、BPCM-8K、BPCM-20K的应力–应变曲线、e) HPCM-4K、BPCM-4K、BPCM-8K、BPCM-20K和PCM-4K的DSC曲线[57];f) EAA-Zn-SA的金属配位作用机理、g) EAA-Zn-SA在70℃下不同修复时间的应力–应变曲线、e) 500次热循环前后EAA-Zn11-SA-GN的DSC曲线[60]--
4. 展望

相变材料在热能储能与热管理领域发挥了重要作用,机械强度决定了相变材料的适用性与耐久性。虽然,定形相变材料在一定程度上解决了发生相变时的泄漏问题,但是,较低的机械强度,使它在特定工况下使用时仍面临一些问题。近年来,聚合物基固–固相变材料由于其无可比拟的优点,比如无泄漏,无体积膨胀和形状稳定性好等优点在热能应用中得到了广泛使用。在聚合物基固–固相变材料中形成的共价型或非共价型聚集体能够显著增强它的机械性能,包括其强度、刚度和韧性等。共价键作用形成的聚合物基固–固相变材料,虽然具有较强的机械性能,但是,由于交联结构,一定程度上很难实现聚合物基固–固相变材料的回收再利用。另一方面,基于非共价键作用的聚合物基固–固相变材料,由于非共价键作用较弱,一定程度上影响了材料的最终机械性能,也使其在使用上受到一定限制。将动态共价键引入聚合物基固–固相变材料中,既可以克服交联共价键作用下聚合物基固–固相变材料不可回收与降解的缺点,又可以增强基于非共价键作用的聚合物基固–固相变材料机械强度。同时,还可实现聚合物基固–固相变材料的自修复,延长其使用寿命,减少资源浪费。相信未来,基于动态共价键引入聚合物基固–固相变材料将会在电子器件、智能织物、生命健康等领域的热存储与热管理中得到广泛的应用。

基金项目

国家自然科学基金(52071226),江苏省杰出青年基金(BK20220061)。

NOTES

*通讯作者。

References Tang, L., Zeng, D., Ling, Z., Zhang, Z. and Fang, X. (2023) Research Progress of Phase Change Materials and Their Application Systems for Cool Storage. Chemical Industry and Engineering Progress, 42, 4322-4339. Elshaer, A.M., Soliman, A.M.A., Yousef, M.S., Kassab, M. and Hawwash, A.A. (2024) Experimental Study about the Impact of Open Cell Aluminium Foam (OCAF) Insertion in Salt-Based Phase Change Material (PCM) for Electronics Thermal Management. Thermal Science and Engineering Progress, 47, Article 102311. >https://doi.org/10.1016/j.tsep.2023.102311 Lyu, J., Liu, Z., Wu, X., Li, G., Fang, D. and Zhang, X. (2019) Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS Nano, 13, 2236-2245. >https://doi.org/10.1021/acsnano.8b08913 Deng, C., Dong, H., Sun, K., Kou, Y., Liu, H., Jian, W., et al. (2023) Synchronous Visual/infrared Stealth Using an Intrinsically Flexible Self-Healing Phase Change Film. Advanced Functional Materials, 33, Article 2212259. >https://doi.org/10.1002/adfm.202212259 Zhou, Y., Yang, J., Bai, L., Bao, R., Yang, M. and Yang, W. (2022) Flexible Phase Change Hydrogels for Mid-/Low-Temperature Infrared Stealth. Chemical Engineering Journal, 446, Article 137463. >https://doi.org/10.1016/j.cej.2022.137463 Zare, M. and Mikkonen, K.S. (2023) Phase Change Materials for Life Science Applications. Advanced Functional Materials, 33, Article 2213455. >https://doi.org/10.1002/adfm.202213455 Jing, Y., Zhao, Z., Cao, X., Sun, Q., Yuan, Y. and Li, T. (2023) Ultraflexible, Cost-Effective and Scalable Polymer-Based Phase Change Composites via Chemical Cross-Linking for Wearable Thermal Management. Nature Communications, 14, Article No. 8060. >https://doi.org/10.1038/s41467-023-43772-4 Lin, Y., Kang, Q., Liu, Y., Zhu, Y., Jiang, P., Mai, Y., et al. (2023) Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators. Nano-Micro Letters, 15, Article No. 31. >https://doi.org/10.1007/s40820-022-01003-3 Aftab, W., Mahmood, A., Guo, W., Yousaf, M., Tabassum, H., Huang, X., et al. (2019) Polyurethane-Based Flexible and Conductive Phase Change Composites for Energy Conversion and Storage. Energy Storage Materials, 20, 401-409. >https://doi.org/10.1016/j.ensm.2018.10.014 Tang, Z., Gao, H., Chen, X., Zhang, Y., Li, A. and Wang, G. (2021) Advanced Multifunctional Composite Phase Change Materials Based on Photo-Responsive Materials. Nano Energy, 80, Article 105454. >https://doi.org/10.1016/j.nanoen.2020.105454 Wu, Y., Chen, M., Zhao, G., Qi, D., Zhang, X., Li, Y., et al. (2024) Recyclable Solid-Solid Phase Change Materials with Superior Latent Heat via Reversible Anhydride-Alcohol Crosslinking for Efficient Thermal Storage. Advanced Materials, 36, Article 2311717. >https://doi.org/10.1002/adma.202311717 Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. >https://doi.org/10.1016/j.ensm.2021.07.019 Usman, A., Xiong, F., Aftab, W., Qin, M. and Zou, R. (2022) Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization. Advanced Materials, 34, Article 2202457. >https://doi.org/10.1002/adma.202202457 Liu, L., Zhang, Y., Zhang, S. and Tang, B. (2023) Advanced Phase Change Materials from Natural Perspectives: Structural Design and Functional Applications. Advanced Science, 10, Article 2207652. >https://doi.org/10.1002/advs.202207652 Liu, C., Zhang, J., Liu, J., Tan, Z., Cao, Y., Li, X., et al. (2021) Highly Efficient Thermal Energy Storage Using a Hybrid Hypercrosslinked Polymer. Angewandte Chemie, 133, 14097-14106. >https://doi.org/10.1002/ange.202103186 Shchukina, E.M., Graham, M., Zheng, Z. and Shchukin, D.G. (2018) Nanoencapsulation of Phase Change Materials for Advanced Thermal Energy Storage Systems. Chemical Society Reviews, 47, 4156-4175. >https://doi.org/10.1039/c8cs00099a Salunkhe, P.B. and Shembekar, P.S. (2012) A Review on Effect of Phase Change Material Encapsulation on the Thermal Performance of a System. Renewable and Sustainable Energy Reviews, 16, 5603-5616. >https://doi.org/10.1016/j.rser.2012.05.037 Fallahi, A., Guldentops, G., Tao, M., Granados-Focil, S. and Van Dessel, S. (2017) Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Applied Thermal Engineering, 127, 1427-1441. >https://doi.org/10.1016/j.applthermaleng.2017.08.161 Qiu, J., Huo, D., Xue, J., Zhu, G., Liu, H. and Xia, Y. (2019) Encapsulation of a Phase-Change Material in Nanocapsules with a Well-Defined Hole in the Wall for the Controlled Release of Drugs. Angewandte Chemie International Edition, 58, 10606-10611. >https://doi.org/10.1002/anie.201904549 Raj, C.R., Suresh, S., Bhavsar, R.R. and Singh, V.K. (2019) Recent Developments in Thermo-Physical Property Enhancement and Applications of Solid-Solid Phase Change Materials. Journal of Thermal Analysis and Calorimetry, 139, 3023-3049. >https://doi.org/10.1007/s10973-019-08703-w Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. >https://doi.org/10.1002/adfm.202312019 Yang, Y., Cai, X. and Kong, W. (2023) A Novel Intrinsic Photothermal and Flexible Solid-Solid Phase Change Materials with Super Mechanical Toughness and Multi-Recyclability. Applied Energy, 332, Article 120564. >https://doi.org/10.1016/j.apenergy.2022.120564 Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. >https://doi.org/10.1016/j.ensm.2021.07.019 Wang, X., Zhang, L., Yu, Y., Jia, L., Sam Mannan, M., Chen, Y., et al. (2015) Nano-Encapsulated PCM via Pickering Emulsification. Scientific Reports, 5, Article No. 13357. >https://doi.org/10.1038/srep13357 de Cortazar, M.G. and Rodríguez, R. (2012) Thermal Storage Nanocapsules by Miniemulsion Polymerization. Journal of Applied Polymer Science, 127, 5059-5064. >https://doi.org/10.1002/app.38124 Zhang, H., Sun, S., Wang, X. and Wu, D. (2011) Fabrication of Microencapsulated Phase Change Materials Based on N-Octadecane Core and Silica Shell through Interfacial Polycondensation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 104-117. >https://doi.org/10.1016/j.colsurfa.2011.08.043 Guo, X., Cao, J., Peng, Y. and Liu, R. (2016) Incorporation of Microencapsulated Dodecanol into Wood Flour/High-Density Polyethylene Composite as a Phase Change Material for Thermal Energy Storage. Materials&Design, 89, 1325-1334. >https://doi.org/10.1016/j.matdes.2015.10.068 Yuan, K., Wang, H., Liu, J., Fang, X. and Zhang, Z. (2015) Novel Slurry Containing Graphene Oxide-Grafted Microencapsulated Phase Change Material with Enhanced Thermo-Physical Properties and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 143, 29-37. >https://doi.org/10.1016/j.solmat.2015.06.034 Aftab, W., Huang, X., Wu, W., Liang, Z., Mahmood, A. and Zou, R. (2018) Nanoconfined Phase Change Materials for Thermal Energy Applications. Energy&Environmental Science, 11, 1392-1424. >https://doi.org/10.1039/c7ee03587j Zhang, Q., Wang, H., Ling, Z., Fang, X. and Zhang, Z. (2015) Rt100/Expand Graphite Composite Phase Change Material with Excellent Structure Stability, Photo-Thermal Performance and Good Thermal Reliability. Solar Energy Materials and Solar Cells, 140, 158-166. >https://doi.org/10.1016/j.solmat.2015.04.008 Wei, X. and Wang, J. (2016) Study on Application Properties of Modified Montmorillonite as Phase Change Material for Energy Storage. Advances in Polymer Technology, 37, 857-868. >https://doi.org/10.1002/adv.21731 Zhang, N., Yuan, Y., Wang, X., Cao, X., Yang, X. and Hu, S. (2013) Preparation and Characterization of Lauric-Myristic-Palmitic Acid Ternary Eutectic Mixtures/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage. Chemical Engineering Journal, 231, 214-219. >https://doi.org/10.1016/j.cej.2013.07.008 Karaman, S., Karaipekli, A., Sari, A. and Biçer, A. (2011) Polyethylene Glycol (PEG)/Diatomite Composite as a Novel Form-Stable Phase Change Material for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 95, 1647-1653. >https://doi.org/10.1016/j.solmat.2011.01.022 Wen, R., Zhang, X., Huang, Y., Yin, Z., Huang, Z., Fang, M., et al. (2017) Preparation and Properties of Fatty Acid Eutectics/Expanded Perlite and Expanded Vermiculite Shape-Stabilized Materials for Thermal Energy Storage in Buildings. Energy and Buildings, 139, 197-204. >https://doi.org/10.1016/j.enbuild.2017.01.025 Yang, X., Yuan, Y., Zhang, N., Cao, X. and Liu, C. (2014) Preparation and Properties of Myristic-Palmitic-Stearic Acid/Expanded Graphite Composites as Phase Change Materials for Energy Storage. Solar Energy, 99, 259-266. >https://doi.org/10.1016/j.solener.2013.11.021 Cai, Z., Liu, J., Zhou, Y., Dai, L., Wang, H., Liao, C., et al. (2021) Flexible Phase Change Materials with Enhanced Tensile Strength, Thermal Conductivity and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 219, Article 110728. >https://doi.org/10.1016/j.solmat.2020.110728 Lee, J., Han, H., Noh, D., Lee, J., Lim, D.D., Park, J., et al. (2024) Multiscale Porous Architecture Consisting of Graphene Aerogels and Metastructures Enabling Robust Thermal and Mechanical Functionalities of Phase Change Materials. Advanced Functional Materials, 34, Article 2405625. >https://doi.org/10.1002/adfm.202405625 Hu, W., Shi, X., Gao, M., Huang, C., Huang, T., Zhang, N., et al. (2021) Light-Actuated Shape Memory and Self-Healing Phase Change Composites Supported by Mxene/Waterborne Polyurethane Aerogel for Superior Solar-Thermal Energy Storage. Composites Communications, 28, Article 100980. >https://doi.org/10.1016/j.coco.2021.100980 Deng, J., Li, X., Li, C., Wang, T., Liang, R., Li, S., et al. (2023) Multifunctional Flexible Composite Phase Change Material with High Anti-Leakage and Thermal Conductivity Performances for Battery Thermal Management. Journal of Energy Storage, 72, Article 108313. >https://doi.org/10.1016/j.est.2023.108313 Ge, X., Tay, G., Hou, Y., Zhao, Y., Sugumaran, P.J., Thai, B.Q., et al. (2023) Flexible and Leakage-Proof Phase Change Composite for Microwave Attenuation and Thermal Management. Carbon, 210, Article 118084. >https://doi.org/10.1016/j.carbon.2023.118084 Jiang, X., Deng, C., Xu, D. and Luo, X. (2023) Epoxy Composites Based on Phase Change Microcapsules with High Thermal Conductivity and Storage Efficiency by Dispersing with Cellulose Nanofibrils. Journal of Energy Storage, 74, Article 109382. >https://doi.org/10.1016/j.est.2023.109382 Yan, B., Li, M., Lu, H., Pi, M., Mu, J., Cui, W., et al. (2024) Composite Aerogel Incorporating Low Temperature Phase Change Microcapsules for Enhanced Thermal Insulation. Chemical Engineering Journal, 481, Article 148540. >https://doi.org/10.1016/j.cej.2024.148540 Saraç, E.G., Öner, E. and Kahraman, M.V. (2019) Microencapsulated Organic Coconut Oil as a Natural Phase Change Material for Thermo-Regulating Cellulosic Fabrics. Cellulose, 26, 8939-8950. >https://doi.org/10.1007/s10570-019-02701-9 Liang, C., Lingling, X., Hongbo, S. and Zhibin, Z. (2009) Microencapsulation of Butyl Stearate as a Phase Change Material by Interfacial Polycondensation in a Polyurea System. Energy Conversion and Management, 50, 723-729. >https://doi.org/10.1016/j.enconman.2008.09.044 Nikpourian, H., Bahramian, A.R. and Abdollahi, M. (2020) On the Thermal Performance of a Novel PCM Nanocapsule: The Effect of Core/Shell. Renewable Energy, 151, 322-331. >https://doi.org/10.1016/j.renene.2019.11.027 Kou, Y., Sun, K., Luo, J., Zhou, F., Huang, H., Wu, Z., et al. (2021) An Intrinsically Flexible Phase Change Film for Wearable Thermal Managements. Energy Storage Materials, 34, 508-514. >https://doi.org/10.1016/j.ensm.2020.10.014 Cui, M., Tian, C., Yang, Y., Huang, L., Liu, Q., Yang, N., et al. (2023) Intrinsic Photothermal Phase Change Materials with Enhanced Toughness and Flexibility for Thermal Management in Extreme Environments. Chemical Engineering Journal, 475, Article 146091. >https://doi.org/10.1016/j.cej.2023.146091 Lai, J., Mei, J., Jia, X., Li, C., You, X. and Bao, Z. (2016) A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. Advanced Materials, 28, 8277-8282. >https://doi.org/10.1002/adma.201602332 Bao, C., Jiang, Y., Zhang, H., Lu, X. and Sun, J. (2018) Room-Temperature Self-Healing and Recyclable Tough Polymer Composites Using Nitrogen-Coordinated Boroxines. Advanced Functional Materials, 28, Article 1800560. >https://doi.org/10.1002/adfm.201800560 Cui, Y., Li, F. and Zhang, X. (2021) Controlling Fluorescence Resonance Energy Transfer of Donor-Acceptor Dyes by Diels-Alder Dynamic Covalent Bonds. Chemical Communications, 57, 3275-3278. >https://doi.org/10.1039/d1cc00165e Xiang, S., Hua, Q., Gong, W., Xie, N., Zhao, P., Cheng, G.J., et al. (2019) Photoplastic Transformation Based on Dynamic Covalent Chemistry. ACS Applied Materials&Interfaces, 11, 23623-23631. >https://doi.org/10.1021/acsami.9b06608 Kim, S., Jeon, H., Shin, S., Park, S., Jegal, J., Hwang, S.Y., et al. (2017) Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Advanced Materials, 30, Article 1705145. >https://doi.org/10.1002/adma.201705145 Deng, J., Kuang, X., Liu, R., Ding, W., Wang, A.C., Lai, Y., et al. (2018) Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Advanced Materials, 30, Article 1705918. >https://doi.org/10.1002/adma.201705918 Zhu, H., Gu, M., Dai, X., Feng, S., Yang, T., Fan, Y., et al. (2024) Mechanically Strong, Healable, and Recyclable Supramolecular Solid–solid Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage. Chemical Engineering Journal, 494, Article 153235. >https://doi.org/10.1016/j.cej.2024.153235 Du, X., Jin, L., Deng, S., Zhou, M., Du, Z., Cheng, X., et al. (2021) Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Applied Materials&Interfaces, 13, 42991-43001. >https://doi.org/10.1021/acsami.1c14862 Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. >https://doi.org/10.1002/adfm.202312019 Tian, C., Ning, J., Yang, Y., Zeng, F., Huang, L., Liu, Q., et al. (2022) Super Tough and Stable Solid-Solid Phase Change Material Based on Π-Π Stacking. Chemical Engineering Journal, 429, Article 132447. >https://doi.org/10.1016/j.cej.2021.132447 Wang, C., Geng, X., Chen, J., Wang, H., Wei, Z., Huang, B., et al. (2023) Multiple H-Bonding Cross-Linked Supramolecular Solid-Solid Phase Change Materials for Thermal Energy Storage and Management. Advanced Materials, 36, Article 2309723. >https://doi.org/10.1002/adma.202309723 Cao, Y., Meng, Y., Jiang, Y., Qian, S., Fan, D., Zhou, X., et al. (2022) Healable Supramolecular Phase Change Polymers for Thermal Energy Harvesting and Storage. Chemical Engineering Journal, 433, Article 134549. >https://doi.org/10.1016/j.cej.2022.134549 Meng, Y., Liu, Y., Wan, Z., Huan, Y., Guo, Q., Fan, D., et al. (2023) A Phase Change Supramolecular Assembly with a Rapid Self-Healing Behavior via Thermally Actuated Reversible Associations. Chemical Engineering Journal, 453, Article 139967. >https://doi.org/10.1016/j.cej.2022.139967 Miao, P., Liu, J., He, M., Leng, X. and Li, Y. (2023) Bio-Based Non-Isocyanate Polyurethane with Closed-Loop Recyclability and Its Potential Application. Chemical Engineering Journal, 475, Article 146398. >https://doi.org/10.1016/j.cej.2023.146398
Baidu
map