Figure 1. a) Temperature-thermal diagram during solid-liquid phase transformation and b) Characteristics of solid-liquid phase transformation [1]--图1. a) 固–液相变过程中温度–热能图与b) 固–液相变的特点[1]--
Figure 3. a) Tensile strength and b) tensile strain at break of EG/OP70-TPE [36]; c) Compressive stress-strain curves of PGA and 3D-MPGA at 70℃ [37]; d) Design schematic diagram of 3D-MPGA [37]; e) Preparation process of WPU@MXene aerogel [38]; f) Tensile stress-strain curves of the original and healed samples and g) POM images of the self-healed samples [38]--图3. EG/OP70-TPE的a) 抗拉强度和b) 断裂拉伸应变[36];c) 70℃下PGA和3D-MPGA的压应力–应变曲线[37];d) 3D-MPGA的设计原理图[37];e) WPU@MXene气凝胶的制备过程[38];f) 原始和愈合样品的拉伸应力–应变曲线和g) 样品自愈合的POM图像[38]--2.2. 聚合物基定形相变材料的制备及机械性能
Figure 4. a) Synthesis diagram of multi-functional flexible shaped phase change materials, b) tensile stress-strain curves of different samples and c) fracture photos of different samples [39]; d) Stress-strain curve of SPP and e) cyclic stress-strain curve of SPP [40]--图4. a) 多功能柔性定形相变材料的合成示意图、b) 不同试样的拉伸应力–应变曲线与c) 不同试样的断口照片[39];d) SPP的应力–应变曲线和e) 循环应力–应变曲线[40]--2.3. 微胶囊定形相变材料的制备及机械性能
Figure 5. a) Preparation process of EBM-C composites [41]; b) Stress-strain curve of EBM-C composites and c) columnar statistical diagram of bending strength and bending modulus [41]; d) Stress-strain curve of PVA-CNF and other materials [42]; e) VA-CNF/MPCM-50 bearing test (1 kg) [42]--图5. a) EBM-C复合材料的制备过程图[41];b) EBM-C复合材料的应力–应变曲线与c) 弯曲强度与弯曲模量的柱状统计图[41];d) PVA-CNF等材料的应力–应变曲线[42];e) VA-CNF/MPCM-50的承重试验(1 kg) [42]--3. 聚合物基固–固相变材料
3.1. 基于共价键的SSPCMs制备及机械性能Figure 6. a) Working principle of phase transition of MTPEG material and b) stress-strain curve of MTPEG [46]; c) Synthesis roadmap of SSPCMs, d) stress-strain curve of SSPCMs [47]; e) Structural diagram of PTPCMs, f) stress-strain curves of PTPCM-1, PTPCM-2 and PTPCM-3 [22]; g) Digital pictures of PTPCM-2 flexibility display and h) thermal cycle stability test [22]--图6. a) MTPEG材料的相变工作原理和b) MTPEG的应力–应变曲线[46];c) SSPCMs的合成路线图、d) SSPCMs的应力–应变曲线[47];e) PTPCMs的结构示意图、f) PTPCM-1、PTPCM-2和PTPCM-3的应力–应变曲线[22];g) PTPCM-2柔韧性展示的数码图片与h) 热循环稳定性测试[22]--
3.2. 基于动态共价键的SSPCMs制备及机械性能Figure 7. a) Synthesis diagram of PEG4K-Bx-PEG6K and b) stress-strain curve of PEG4K-Bx-PEG6K [54]; c) Schematic diagram of preparation of FPCMs and d) stress-strain curves of PCM and FPCMs [55]; e) stress-strain curves of shPMM-HA-40%~60%; stress-strain curves of f) ShPMM-DA-40%~60% and g) ShPMM-DA-60%, SHPMM-HA-60%, ShPMM-TA-60% [56]--图7. a) PEG4K-Bx-PEG6K的合成示意图与b) PEG4K-Bx-PEG6K的应力–应变曲线[54];c) FPCMs的制备示意图与d) PCM与FPCMs的应力–应变曲线[55];e) SHPCM-HA-40%~60%、f) SHPCM-DA-40%~60%与g) SHPCM-DA-60%,SHPCM-HA-60%,SHPCM-TA-60%的应力–应变曲线[56]--
Figure 8. a) Working mechanism of MHPCMs and mode of hydrogen bonding and b) Stress-strain curve of MHPCMs [58]; c) π-π stacking and hydrogen bonding between molecular chains, d) stress-strain curves of HPCMM-4K, BPCMM-4K, BPCMM-8K, BPCMM-20K, e) DSC curves of HPCMM-4K, BPCMM-4K, BPCMM-8K, BPCMM-20K and PMM-4K [57]; f) Metal coordination mechanism of EAA-Zn-SA, g) stress-strain curves of EAA-Zn-SA at different repair times at 70 oC, e) DSC curves of EAA-Zn11-SA-GN before and after 500 thermal cycles [60]--图8. a) MHPCMs的工作机制与氢键作用方式b) MHPCMs的应力–应变曲线[58];c) 分子链间π-π堆积层和氢键作用、d) HPCM-4K、BPCM-4K、BPCM-8K、BPCM-20K的应力–应变曲线、e) HPCM-4K、BPCM-4K、BPCM-8K、BPCM-20K和PCM-4K的DSC曲线[57];f) EAA-Zn-SA的金属配位作用机理、g) EAA-Zn-SA在70℃下不同修复时间的应力–应变曲线、e) 500次热循环前后EAA-Zn11-SA-GN的DSC曲线[60]--4. 展望
References
Tang, L., Zeng, D., Ling, Z., Zhang, Z. and Fang, X. (2023) Research Progress of Phase Change Materials and Their Application Systems for Cool Storage. Chemical Industry and Engineering Progress, 42, 4322-4339.
Elshaer, A.M., Soliman, A.M.A., Yousef, M.S., Kassab, M. and Hawwash, A.A. (2024) Experimental Study about the Impact of Open Cell Aluminium Foam (OCAF) Insertion in Salt-Based Phase Change Material (PCM) for Electronics Thermal Management. Thermal Science and Engineering Progress, 47, Article 102311. >https://doi.org/10.1016/j.tsep.2023.102311
Lyu, J., Liu, Z., Wu, X., Li, G., Fang, D. and Zhang, X. (2019) Nanofibrous Kevlar Aerogel Films and Their Phase-Change Composites for Highly Efficient Infrared Stealth. ACS Nano, 13, 2236-2245. >https://doi.org/10.1021/acsnano.8b08913
Deng, C., Dong, H., Sun, K., Kou, Y., Liu, H., Jian, W., et al. (2023) Synchronous Visual/infrared Stealth Using an Intrinsically Flexible Self-Healing Phase Change Film. Advanced Functional Materials, 33, Article 2212259. >https://doi.org/10.1002/adfm.202212259
Zhou, Y., Yang, J., Bai, L., Bao, R., Yang, M. and Yang, W. (2022) Flexible Phase Change Hydrogels for Mid-/Low-Temperature Infrared Stealth. Chemical Engineering Journal, 446, Article 137463. >https://doi.org/10.1016/j.cej.2022.137463
Zare, M. and Mikkonen, K.S. (2023) Phase Change Materials for Life Science Applications. Advanced Functional Materials, 33, Article 2213455. >https://doi.org/10.1002/adfm.202213455
Jing, Y., Zhao, Z., Cao, X., Sun, Q., Yuan, Y. and Li, T. (2023) Ultraflexible, Cost-Effective and Scalable Polymer-Based Phase Change Composites via Chemical Cross-Linking for Wearable Thermal Management. Nature Communications, 14, Article No. 8060. >https://doi.org/10.1038/s41467-023-43772-4
Lin, Y., Kang, Q., Liu, Y., Zhu, Y., Jiang, P., Mai, Y., et al. (2023) Flexible, Highly Thermally Conductive and Electrically Insulating Phase Change Materials for Advanced Thermal Management of 5G Base Stations and Thermoelectric Generators. Nano-Micro Letters, 15, Article No. 31. >https://doi.org/10.1007/s40820-022-01003-3
Aftab, W., Mahmood, A., Guo, W., Yousaf, M., Tabassum, H., Huang, X., et al. (2019) Polyurethane-Based Flexible and Conductive Phase Change Composites for Energy Conversion and Storage. Energy Storage Materials, 20, 401-409. >https://doi.org/10.1016/j.ensm.2018.10.014
Tang, Z., Gao, H., Chen, X., Zhang, Y., Li, A. and Wang, G. (2021) Advanced Multifunctional Composite Phase Change Materials Based on Photo-Responsive Materials. Nano Energy, 80, Article 105454. >https://doi.org/10.1016/j.nanoen.2020.105454
Wu, Y., Chen, M., Zhao, G., Qi, D., Zhang, X., Li, Y., et al. (2024) Recyclable Solid-Solid Phase Change Materials with Superior Latent Heat via Reversible Anhydride-Alcohol Crosslinking for Efficient Thermal Storage. Advanced Materials, 36, Article 2311717. >https://doi.org/10.1002/adma.202311717
Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. >https://doi.org/10.1016/j.ensm.2021.07.019
Usman, A., Xiong, F., Aftab, W., Qin, M. and Zou, R. (2022) Emerging Solid-to-Solid Phase-Change Materials for Thermal-Energy Harvesting, Storage, and Utilization. Advanced Materials, 34, Article 2202457. >https://doi.org/10.1002/adma.202202457
Liu, L., Zhang, Y., Zhang, S. and Tang, B. (2023) Advanced Phase Change Materials from Natural Perspectives: Structural Design and Functional Applications. Advanced Science, 10, Article 2207652. >https://doi.org/10.1002/advs.202207652
Liu, C., Zhang, J., Liu, J., Tan, Z., Cao, Y., Li, X., et al. (2021) Highly Efficient Thermal Energy Storage Using a Hybrid Hypercrosslinked Polymer. Angewandte Chemie, 133, 14097-14106. >https://doi.org/10.1002/ange.202103186
Shchukina, E.M., Graham, M., Zheng, Z. and Shchukin, D.G. (2018) Nanoencapsulation of Phase Change Materials for Advanced Thermal Energy Storage Systems. Chemical Society Reviews, 47, 4156-4175. >https://doi.org/10.1039/c8cs00099a
Salunkhe, P.B. and Shembekar, P.S. (2012) A Review on Effect of Phase Change Material Encapsulation on the Thermal Performance of a System. Renewable and Sustainable Energy Reviews, 16, 5603-5616. >https://doi.org/10.1016/j.rser.2012.05.037
Fallahi, A., Guldentops, G., Tao, M., Granados-Focil, S. and Van Dessel, S. (2017) Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Applied Thermal Engineering, 127, 1427-1441. >https://doi.org/10.1016/j.applthermaleng.2017.08.161
Qiu, J., Huo, D., Xue, J., Zhu, G., Liu, H. and Xia, Y. (2019) Encapsulation of a Phase-Change Material in Nanocapsules with a Well-Defined Hole in the Wall for the Controlled Release of Drugs. Angewandte Chemie International Edition, 58, 10606-10611. >https://doi.org/10.1002/anie.201904549
Raj, C.R., Suresh, S., Bhavsar, R.R. and Singh, V.K. (2019) Recent Developments in Thermo-Physical Property Enhancement and Applications of Solid-Solid Phase Change Materials. Journal of Thermal Analysis and Calorimetry, 139, 3023-3049. >https://doi.org/10.1007/s10973-019-08703-w
Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. >https://doi.org/10.1002/adfm.202312019
Yang, Y., Cai, X. and Kong, W. (2023) A Novel Intrinsic Photothermal and Flexible Solid-Solid Phase Change Materials with Super Mechanical Toughness and Multi-Recyclability. Applied Energy, 332, Article 120564. >https://doi.org/10.1016/j.apenergy.2022.120564
Wu, M.Q., Wu, S., Cai, Y.F., Wang, R.Z. and Li, T.X. (2021) Form-Stable Phase Change Composites: Preparation, Performance, and Applications for Thermal Energy Conversion, Storage and Management. Energy Storage Materials, 42, 380-417. >https://doi.org/10.1016/j.ensm.2021.07.019
Wang, X., Zhang, L., Yu, Y., Jia, L., Sam Mannan, M., Chen, Y., et al. (2015) Nano-Encapsulated PCM via Pickering Emulsification. Scientific Reports, 5, Article No. 13357. >https://doi.org/10.1038/srep13357
de Cortazar, M.G. and Rodríguez, R. (2012) Thermal Storage Nanocapsules by Miniemulsion Polymerization. Journal of Applied Polymer Science, 127, 5059-5064. >https://doi.org/10.1002/app.38124
Zhang, H., Sun, S., Wang, X. and Wu, D. (2011) Fabrication of Microencapsulated Phase Change Materials Based on N-Octadecane Core and Silica Shell through Interfacial Polycondensation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 104-117. >https://doi.org/10.1016/j.colsurfa.2011.08.043
Guo, X., Cao, J., Peng, Y. and Liu, R. (2016) Incorporation of Microencapsulated Dodecanol into Wood Flour/High-Density Polyethylene Composite as a Phase Change Material for Thermal Energy Storage. Materials&Design, 89, 1325-1334. >https://doi.org/10.1016/j.matdes.2015.10.068
Yuan, K., Wang, H., Liu, J., Fang, X. and Zhang, Z. (2015) Novel Slurry Containing Graphene Oxide-Grafted Microencapsulated Phase Change Material with Enhanced Thermo-Physical Properties and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 143, 29-37. >https://doi.org/10.1016/j.solmat.2015.06.034
Aftab, W., Huang, X., Wu, W., Liang, Z., Mahmood, A. and Zou, R. (2018) Nanoconfined Phase Change Materials for Thermal Energy Applications. Energy&Environmental Science, 11, 1392-1424. >https://doi.org/10.1039/c7ee03587j
Zhang, Q., Wang, H., Ling, Z., Fang, X. and Zhang, Z. (2015) Rt100/Expand Graphite Composite Phase Change Material with Excellent Structure Stability, Photo-Thermal Performance and Good Thermal Reliability. Solar Energy Materials and Solar Cells, 140, 158-166. >https://doi.org/10.1016/j.solmat.2015.04.008
Wei, X. and Wang, J. (2016) Study on Application Properties of Modified Montmorillonite as Phase Change Material for Energy Storage. Advances in Polymer Technology, 37, 857-868. >https://doi.org/10.1002/adv.21731
Zhang, N., Yuan, Y., Wang, X., Cao, X., Yang, X. and Hu, S. (2013) Preparation and Characterization of Lauric-Myristic-Palmitic Acid Ternary Eutectic Mixtures/Expanded Graphite Composite Phase Change Material for Thermal Energy Storage. Chemical Engineering Journal, 231, 214-219. >https://doi.org/10.1016/j.cej.2013.07.008
Karaman, S., Karaipekli, A., Sari, A. and Biçer, A. (2011) Polyethylene Glycol (PEG)/Diatomite Composite as a Novel Form-Stable Phase Change Material for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 95, 1647-1653. >https://doi.org/10.1016/j.solmat.2011.01.022
Wen, R., Zhang, X., Huang, Y., Yin, Z., Huang, Z., Fang, M., et al. (2017) Preparation and Properties of Fatty Acid Eutectics/Expanded Perlite and Expanded Vermiculite Shape-Stabilized Materials for Thermal Energy Storage in Buildings. Energy and Buildings, 139, 197-204. >https://doi.org/10.1016/j.enbuild.2017.01.025
Yang, X., Yuan, Y., Zhang, N., Cao, X. and Liu, C. (2014) Preparation and Properties of Myristic-Palmitic-Stearic Acid/Expanded Graphite Composites as Phase Change Materials for Energy Storage. Solar Energy, 99, 259-266. >https://doi.org/10.1016/j.solener.2013.11.021
Cai, Z., Liu, J., Zhou, Y., Dai, L., Wang, H., Liao, C., et al. (2021) Flexible Phase Change Materials with Enhanced Tensile Strength, Thermal Conductivity and Photo-Thermal Performance. Solar Energy Materials and Solar Cells, 219, Article 110728. >https://doi.org/10.1016/j.solmat.2020.110728
Lee, J., Han, H., Noh, D., Lee, J., Lim, D.D., Park, J., et al. (2024) Multiscale Porous Architecture Consisting of Graphene Aerogels and Metastructures Enabling Robust Thermal and Mechanical Functionalities of Phase Change Materials. Advanced Functional Materials, 34, Article 2405625. >https://doi.org/10.1002/adfm.202405625
Hu, W., Shi, X., Gao, M., Huang, C., Huang, T., Zhang, N., et al. (2021) Light-Actuated Shape Memory and Self-Healing Phase Change Composites Supported by Mxene/Waterborne Polyurethane Aerogel for Superior Solar-Thermal Energy Storage. Composites Communications, 28, Article 100980. >https://doi.org/10.1016/j.coco.2021.100980
Deng, J., Li, X., Li, C., Wang, T., Liang, R., Li, S., et al. (2023) Multifunctional Flexible Composite Phase Change Material with High Anti-Leakage and Thermal Conductivity Performances for Battery Thermal Management. Journal of Energy Storage, 72, Article 108313. >https://doi.org/10.1016/j.est.2023.108313
Ge, X., Tay, G., Hou, Y., Zhao, Y., Sugumaran, P.J., Thai, B.Q., et al. (2023) Flexible and Leakage-Proof Phase Change Composite for Microwave Attenuation and Thermal Management. Carbon, 210, Article 118084. >https://doi.org/10.1016/j.carbon.2023.118084
Jiang, X., Deng, C., Xu, D. and Luo, X. (2023) Epoxy Composites Based on Phase Change Microcapsules with High Thermal Conductivity and Storage Efficiency by Dispersing with Cellulose Nanofibrils. Journal of Energy Storage, 74, Article 109382. >https://doi.org/10.1016/j.est.2023.109382
Yan, B., Li, M., Lu, H., Pi, M., Mu, J., Cui, W., et al. (2024) Composite Aerogel Incorporating Low Temperature Phase Change Microcapsules for Enhanced Thermal Insulation. Chemical Engineering Journal, 481, Article 148540. >https://doi.org/10.1016/j.cej.2024.148540
Saraç, E.G., Öner, E. and Kahraman, M.V. (2019) Microencapsulated Organic Coconut Oil as a Natural Phase Change Material for Thermo-Regulating Cellulosic Fabrics. Cellulose, 26, 8939-8950. >https://doi.org/10.1007/s10570-019-02701-9
Liang, C., Lingling, X., Hongbo, S. and Zhibin, Z. (2009) Microencapsulation of Butyl Stearate as a Phase Change Material by Interfacial Polycondensation in a Polyurea System. Energy Conversion and Management, 50, 723-729. >https://doi.org/10.1016/j.enconman.2008.09.044
Nikpourian, H., Bahramian, A.R. and Abdollahi, M. (2020) On the Thermal Performance of a Novel PCM Nanocapsule: The Effect of Core/Shell. Renewable Energy, 151, 322-331. >https://doi.org/10.1016/j.renene.2019.11.027
Kou, Y., Sun, K., Luo, J., Zhou, F., Huang, H., Wu, Z., et al. (2021) An Intrinsically Flexible Phase Change Film for Wearable Thermal Managements. Energy Storage Materials, 34, 508-514. >https://doi.org/10.1016/j.ensm.2020.10.014
Cui, M., Tian, C., Yang, Y., Huang, L., Liu, Q., Yang, N., et al. (2023) Intrinsic Photothermal Phase Change Materials with Enhanced Toughness and Flexibility for Thermal Management in Extreme Environments. Chemical Engineering Journal, 475, Article 146091. >https://doi.org/10.1016/j.cej.2023.146091
Lai, J., Mei, J., Jia, X., Li, C., You, X. and Bao, Z. (2016) A Stiff and Healable Polymer Based on Dynamic-Covalent Boroxine Bonds. Advanced Materials, 28, 8277-8282. >https://doi.org/10.1002/adma.201602332
Bao, C., Jiang, Y., Zhang, H., Lu, X. and Sun, J. (2018) Room-Temperature Self-Healing and Recyclable Tough Polymer Composites Using Nitrogen-Coordinated Boroxines. Advanced Functional Materials, 28, Article 1800560. >https://doi.org/10.1002/adfm.201800560
Cui, Y., Li, F. and Zhang, X. (2021) Controlling Fluorescence Resonance Energy Transfer of Donor-Acceptor Dyes by Diels-Alder Dynamic Covalent Bonds. Chemical Communications, 57, 3275-3278. >https://doi.org/10.1039/d1cc00165e
Xiang, S., Hua, Q., Gong, W., Xie, N., Zhao, P., Cheng, G.J., et al. (2019) Photoplastic Transformation Based on Dynamic Covalent Chemistry. ACS Applied Materials&Interfaces, 11, 23623-23631. >https://doi.org/10.1021/acsami.9b06608
Kim, S., Jeon, H., Shin, S., Park, S., Jegal, J., Hwang, S.Y., et al. (2017) Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Advanced Materials, 30, Article 1705145. >https://doi.org/10.1002/adma.201705145
Deng, J., Kuang, X., Liu, R., Ding, W., Wang, A.C., Lai, Y., et al. (2018) Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Advanced Materials, 30, Article 1705918. >https://doi.org/10.1002/adma.201705918
Zhu, H., Gu, M., Dai, X., Feng, S., Yang, T., Fan, Y., et al. (2024) Mechanically Strong, Healable, and Recyclable Supramolecular Solid–solid Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage. Chemical Engineering Journal, 494, Article 153235. >https://doi.org/10.1016/j.cej.2024.153235
Du, X., Jin, L., Deng, S., Zhou, M., Du, Z., Cheng, X., et al. (2021) Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Applied Materials&Interfaces, 13, 42991-43001. >https://doi.org/10.1021/acsami.1c14862
Wei, Z., Liao, Y., Liu, T., Yuan, A., Wu, X., Jiang, L., et al. (2023) Design of Sustainable Self-Healing Phase Change Materials by Dynamic Semi-Interpenetrating Network Structure. Advanced Functional Materials, 34, Article 2312019. >https://doi.org/10.1002/adfm.202312019
Tian, C., Ning, J., Yang, Y., Zeng, F., Huang, L., Liu, Q., et al. (2022) Super Tough and Stable Solid-Solid Phase Change Material Based on Π-Π Stacking. Chemical Engineering Journal, 429, Article 132447. >https://doi.org/10.1016/j.cej.2021.132447
Wang, C., Geng, X., Chen, J., Wang, H., Wei, Z., Huang, B., et al. (2023) Multiple H-Bonding Cross-Linked Supramolecular Solid-Solid Phase Change Materials for Thermal Energy Storage and Management. Advanced Materials, 36, Article 2309723. >https://doi.org/10.1002/adma.202309723
Cao, Y., Meng, Y., Jiang, Y., Qian, S., Fan, D., Zhou, X., et al. (2022) Healable Supramolecular Phase Change Polymers for Thermal Energy Harvesting and Storage. Chemical Engineering Journal, 433, Article 134549. >https://doi.org/10.1016/j.cej.2022.134549
Meng, Y., Liu, Y., Wan, Z., Huan, Y., Guo, Q., Fan, D., et al. (2023) A Phase Change Supramolecular Assembly with a Rapid Self-Healing Behavior via Thermally Actuated Reversible Associations. Chemical Engineering Journal, 453, Article 139967. >https://doi.org/10.1016/j.cej.2022.139967
Miao, P., Liu, J., He, M., Leng, X. and Li, Y. (2023) Bio-Based Non-Isocyanate Polyurethane with Closed-Loop Recyclability and Its Potential Application. Chemical Engineering Journal, 475, Article 146398. >https://doi.org/10.1016/j.cej.2023.146398