心理学中有关个体差异的研究衍生了许多人格理论。其中,最有效衡量个体差异的理论之一是大五人格模型。该模型涵盖开放性、尽责性、外向性、宜人性和神经质五个主要维度。其他常用人格模型还有迈尔斯布里格斯类型指标(Myers-Briggs type indicator, MBTI)以及DISC模型。不过,多数人格理论主要借助传统的人格心理测验和问卷展开研究,如自陈量表,投射测验等。尽管这些测验在一定程度上能够准确反映个体的人格类型特征,但其测验实施要求较高,样本采集难度大,使用范围有限。如今,随着社交媒体的普及,人们之间的互动变得更加多样化,为人格识别研究提供了丰富的数据源。越来越多的计算机技术与人格研究方法相结合,推动了人格计算领域的发展。
References
林浩, 王春东, 孙永杰. 面向社交媒体数据的人格识别研究进展[J]. 计算机科学与探索, 2023, 17(5): 1002-1016.
Majumder, N., Poria, S., Gelbukh, A. and Cambria, E. (2017) Deep Learning-Based Document Modeling for Personality Detection from Text. IEEE Intelligent Systems, 32, 74-79. >https://doi.org/10.1109/mis.2017.23
Kazameini, A., Fatehi, S., Mehta, Y., Eetemadi, S. and Cambria, E. (2020) Personality Trait Detection Using Bagged SVM over BERT Word Embedding Ensembles. arXiv: 2010.01309.
Li, Y., Kazemeini, A., Mehta, Y. and Cambria, E. (2022) Multitask Learning for Emotion and Personality Traits Detection. Neurocomputing, 493, 340-350. >https://doi.org/10.1016/j.neucom.2022.04.049
Argamon, S., Dhawle, S., Koppel, M. and Pennebaker, J.W. (2005) Lexical Predictors of Personality Type. Proceedings of Joint Annual Meeting of the Interface and the Classification Society of North America, St Louis, 8-12 June 2005, 1-16.
Mairesse, F., Walker, M.A., Mehl, M.R. and Moore, R.K. (2007) Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text. Journal of Artificial Intelligence Research, 30, 457-500. >https://doi.org/10.1613/jair.2349
Poria, S., Gelbukh, A., Agarwal, B., Cambria, E. and Howard, N. (2013) Common Sense Knowledge Based Personality Recognition from Text. Advances in Soft Computing and Its Applications, Mexico City, 24-30 November 2013, 484-496. >https://doi.org/10.1007/978-3-642-45111-9_42
Golbeck, J., Robles, C., Edmondson, M. and Turner, K. (2011) Predicting Personality from Twitter. 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference on Social Computing, Boston, 9-11 October 2011, 149-156. >https://doi.org/10.1109/passat/socialcom.2011.33
Choong, E.J. and Varathan, K.D. (2021) Predicting Judging-Perceiving of Myers-Briggs Type Indicator (MBTI) in Online Social Forum. PeerJ, 9, e11382. >https://doi.org/10.7717/peerj.11382
Kumar, S., West, R. and Leskovec, J. (2016) Disinformation on the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes. Proceedings of the 25th International Conference on World Wide Web, Montréal Québec, 1-15 April 1 2016, 591-602. >https://doi.org/10.1145/2872427.2883085
Mehta, Y., Fatehi, S., Kazameini, A., Stachl, C., Cambria, E. and Eetemadi, S. (2020) Bottom-up and Top-Down: Predicting Personality with Psycholinguistic and Language Model Features. 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, 17-20 November 2020, 1184-1189. >https://doi.org/10.1109/icdm50108.2020.00146
El-Demerdash, K., El-Khoribi, R.A., Ismail Shoman, M.A. and Abdou, S. (2022) Deep Learning Based Fusion Strategies for Personality Prediction. Egyptian Informatics Journal, 23, 47-53. >https://doi.org/10.1016/j.eij.2021.05.004
Christian, H., Suhartono, D., Chowanda, A. and Zamli, K.Z. (2021) Text Based Personality Prediction from Multiple Social Media Data Sources Using Pre-Trained Language Model and Model Averaging. Journal of Big Data, 8, Article No. 68. >https://doi.org/10.1186/s40537-021-00459-1
Ren, Z., Shen, Q., Diao, X. and Xu, H. (2021) A Sentiment-Aware Deep Learning Approach for Personality Detection from Text. Information Processing&Management, 58, Article 102532. >https://doi.org/10.1016/j.ipm.2021.102532
López Pabón, F.O. and Orozco Arroyave, J.R. (2021) Automatic Personality Evaluation from Transliterations of Youtube Vlogs Using Classical and State of the Art Word Embeddings. Ingeniería e Investigación, 42, e93803. >https://doi.org/10.15446/ing.investig.93803
Ryan, G., Katarina, P. and Suhartono, D. (2023) MBTI Personality Prediction Using Machine Learning and SMOTE for Balancing Data Based on Statement Sentences. Information, 14, Article 217. >https://doi.org/10.3390/info14040217
Yuan, C., Wu, J., Li, H. and Wang, L. (2018) Personality Recognition Based on User Generated Content. 2018 15th International Conference on Service Systems and Service Management (ICSSSM), Hangzhou, 21-22 July 2018, 1-6. >https://doi.org/10.1109/icsssm.2018.8465006
Sujatha, N., Pramod, S., Bhatla, S., Thulasimani, T., Kant, R. and Chauhan, A. (2023) Efficient Method for Personality Prediction Using Hybrid Method of Convolutional Neural Network and LSTM. 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, 6-8 July 2023, 959-964. >https://doi.org/10.1109/icesc57686.2023.10193058
Lynn, V., Balasubramanian, N. and Schwartz, H.A. (2020) Hierarchical Modeling for User Personality Prediction: The Role of Message-Level Attention. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5-10 July 2020, 5306-5316. >https://doi.org/10.18653/v1/2020.acl-main.472
Wang, X., Sui, Y., Zheng, K., Shi, Y. and Cao, S. (2021) Personality Classification of Social Users Based on Feature Fusion. Sensors, 21, Article 6758. >https://doi.org/10.3390/s21206758
Ramezani, M., Feizi-Derakhshi, M., Balafar, M., Asgari-Chenaghlu, M., Feizi-Derakhshi, A., Nikzad-Khasmakhi, N., et al. (2022) Automatic Personality Prediction: An Enhanced Method Using Ensemble Modeling. Neural Computing and Applications, 34, 18369-18389. >https://doi.org/10.1007/s00521-022-07444-6
Fernández-Pichel, M., Aragón, M.E., Saborido-Patiño, J. and Losada, D.E. (2023) Personality Trait Analysis during the COVID-19 Pandemic: A Comparative Study on Social Media. Journal of Intelligent Information Systems, 62, 117-142. >https://doi.org/10.1007/s10844-023-00810-3