设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2022,11(8),6087-6098
PublishedOnlineAugust2022inHans.//www.abtbus.com/journal/aam
https://doi.org/10.12677/aam.2022.118641
.
5
2
Â
Mann-Halpern
Ž
{
9
Ù
A^
NNN
___
H
“
‰
Œ
Æ
ê
ÆÆ
§
H
&
²
Â
v
F
Ï
µ
2022
c
7
26
F
¶
¹
^
F
Ï
µ
2022
c
8
19
F
¶
u
Ù
F
Ï
µ
2022
c
8
29
F
Á
‡
©
Ì
‡
ï
Ä
Hilbert
˜
m
¥
š
*
Ü
N
Ø
Ä:
¯
K
"
J
Ñ
˜
«
.
5
2
Â
Mann-Halpern
Ž
{
"
3
˜
½
^
‡
e
y
²
Ž
{
r
Â
ñ
5
"
ò
Ž
{
A^u
¦
)
Fermat-Weber
½
¯
K
§
¿
‰
Ñ
ê
Š
¢
(
J
"
ƒ
'
®
k
Ž
{
§
T
Ž
{
3
ë
ê
À
þ
•
ä
(
¹
5
"
'
…
c
š
*
Ü
N
§
Ø
Ä:
¯
K
§
.
5
Ž
{
§
2
Â
Mann-Halpern
Ž
{
InertialGeneralizedMann-Halpern
AlgorithmandItsApplication
YunxiaXu
SchoolofMathematics,YunnanNormalUniversity,KunmingYunnan
Received:Jul.26
th
,2022;accepted:Aug.19
th
,2022;published:Aug.29
th
,2022
Abstract
We considered the fixed point problem of nonexpansive mapping in Hilbert space.We
proposedaninertialgeneralizedMann-Halpernalgorithm.Givingcertainconditions,
©
Ù
Ú
^
:
N
_
.
.
5
2
Â
Mann-Halpern
Ž
{
9
Ù
A^
[J].
A^
ê
Æ
?
Ð
,2022,11(8):6087-6098.
DOI:10.12677/aam.2022.118641
N
_
weprovedthestrongconvergenceofthealgorithm.Thenweappliedthealgorithm
to solve the Fermat-Weber locationproblem,and gaveanumerical experiment.Com-
paredwithalgorithmshadbeenproposedbefore,ouralgorithmhastheflexibilityon
choosingparameters.
Keywords
NonexpansiveMapping,FixedPointProblem,InertialAlgorithm,Generalized
Mann-HalpernAlgorithm
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
©
Ì
‡
ï
Ä
š
*
Ü
N
T
Ø
Ä:
¯
K
.
H
“
L
Hilbert
˜
m
,
h·
,
·i
,
k·k
©
O
“
L
H
þ
S
È
9
Ù
p
‰
ê
.
C
⊂H
´
š
˜
4
à
8
,
T
:
C
→
C
´
š
*
Ü
N
.
Mann
3
©
z
[1]
¥
J
Ñ
²
;
Mann
Ž
{
,
é
u
x
0
∈
C
,
α
∈
(0
,
1) ,
Ù
S
“
/
ª
•
:
x
n
+1
=
αx
n
+(1
−
α
)
Tx
n
,n
= 0
,
1
,
2
,
···
.
(1)
Reich
3
©
z
[2]
¥
J
Ñ
˜
„
/
ª
Mann
Ž
{
,
é
u
x
0
∈
C
,
{
α
n
}⊂
(0
,
1),
Ù
S
“
/
ª
•
:
x
n
+1
=
α
n
x
n
+(1
−
α
n
)
Tx
n
,n
= 0
,
1
,
2
,
···
.
(2)
3
˜
½
^
‡
e
y
²
{
x
n
}
f
Â
ñ
T
Ø
Ä:
.
•
„
©
z
[2].
Halpern
3
©
z
[3]
¥
J
Ñ
Halpern
Ž
{
,
é
u
x
0
,u
∈
C
,
{
α
n
}⊂
(0
,
1),
Ù
S
“
/
ª
•
:
x
n
+1
=
α
n
u
+(1
−
α
n
)
Tx
n
,n
= 0
,
1
,
2
,
···
.
(3)
y
²
{
x
n
}
r
Â
ñ
T
Ø
Ä:
7
‡
^
‡
´
:lim
n
→∞
α
n
= 0,
∞
P
n
=0
α
n
=
∞
.
Wittmann
3
©
z
[4]
¥y
²
Ž
{
(3)
¥
S
{
x
n
}
r
Â
ñ
T
Ø
Ä:
¿
©
^
‡
´
:
lim
n
→∞
α
n
= 0,
∞
P
n
=0
α
n
=
∞
,
…
∞
P
n
=0
|
α
n
+1
−
α
n
|
<
∞
.
DOI:10.12677/aam.2022.1186416088
A^
ê
Æ
?
Ð
N
_
,
˜
•
¡
,
.
5
Ž
{
•
@
´
d
Polyak
3
©
z
[5]
¥
J
Ñ
,
T
Ž
{
3
\
¯
Â
ñ
„
Ç
•
¡
å
X
-
‡
Š
^
.
e
˜
Ú
S
“
d
c
ü
Ú
S
“
,
=
x
n
+1
=
x
n
+
θ
n
(
x
n
−
x
n
−
1
)
,n
= 0
,
1
,
2
,
···
.
(4)
Ù
¥
x
0
,x
1
∈
C
,
{
θ
n
}⊂
[0
,
1).
C
c
5
,
é
.
5
Ž
{
k
X
Œ
þ
ï
Ä
,
~
X
,
.
5
c
©
Ž
{
[6],
.
5
Ý
K
Ž
{
[7],
.
5
Mann
Ž
{
[8–12]
.
Mainge
3
©
z
[8]
¥
J
Ñ
.
5
Mann
Ž
{
,
é
u
x
0
,x
1
∈
C
,
{
α
n
}⊂
(0
,
1),
Ù
S
“
/
ª
•
:
w
n
=
x
n
+
θ
n
(
x
n
−
x
n
−
1
)
,
x
n
+1
=
α
n
w
n
+(1
−
α
n
)
Tw
n
,n
= 0
,
1
,
2
,
···
.
(5)
3
˜
½
^
‡
e
,
y
²
Ž
{
(5)
f
Â
ñ
5
.
•
„
©
z
[8].
Tan
<
3
©
z
[12]
¥
J
Ñ
?
.
5
Mann-Halpern
Ž
{
,
é
u
x
0
,x
1
,u
∈
C
,
{
α
n
}
,
{
β
n
}⊂
(0
,
1),
Ù
S
“
/
ª
•
:
w
n
=
x
n
+
θ
n
(
x
n
−
x
n
−
1
)
,
y
n
=
β
n
w
n
+(1
−
β
n
)
Tw
n
,
x
n
+1
=
α
n
u
+(1
−
α
n
)
y
n
,n
= 0
,
1
,
2
,
···
.
(6)
3
˜
½
^
‡
e
,
y
²
Ž
{
(6)
ä
k
r
Â
ñ
5
.
•
„
©
z
[12].
©
3
©
z
[12]
Ä
:
þ
,
J
Ñ
.
5
2
Â
Mann-Halpern
Ž
{
,
S
“
/
ª
•
:
w
n
=
x
n
+
θ
n
(
x
n
−
x
n
−
1
)
,
y
n
=
s
n
w
n
+
t
n
Tw
n
,
x
n
+1
=
α
n
u
+(1
−
α
n
)
y
n
,n
= 0
,
1
,
2
,
···
.
(7)
Ù
¥
x
0
,x
1
,u
∈
C
,
{
θ
n
}⊂
[0
,
1),
{
s
n
}
,
{
t
n
}
,
{
α
n
}⊂
(0
,
1).
Ž
{
(7)
3
ë
ê
À
þ
•
\
(
¹
:
s
n
+
t
n
≡
1
ž
,
T
Ž
{
ò
z
¤
Ž
{
(6).
3
˜
½
^
‡
e
,
·
‚
ò
y
²
Ž
{
r
Â
ñ
5
.
2.
ý
•
£
!
Ì
‡
‰
Ñ
˜
½
n
y
²
¥
I
‡
^
Ú
n
Ú
Ä
V
g
.
½
Â
1.
N
T
:
C
→
C
,
X
J
é
?
¿
x,y
∈
C
,
Ñ
k
k
Tx
−
Ty
k≤k
x
−
y
k
,
K
¡
T
´
C
þ
š
*
Ü
N
.
X
J
•
3
x
∈
C
,
¦
x
=
Tx
,
K
¡
x
´
T
Ø
Ä:
,
P
T
¤
k
Ø
Ä:
¤
8
Ü
•
Fix(
T
)
.
5
1.
©
¥
,
X
Ã
A
Ï
`
²
,
þ
b
T
´
š
*
Ü
N
,
¿
…
Fix(
T
)
6
=
∅
.
DOI:10.12677/aam.2022.1186416089
A^
ê
Æ
?
Ð
N
_
½
Â
2.
H
Ý
˜
m
H
∗
:=
{
g
:
H→
R
g
•
H
þ
ë
Y
‚
5
•
¼
}
.
x
∈H
,
S
{
x
n
}⊂H
,
X
J
é
?
¿
g
∈H
∗
Ñ
k
lim
n
→∞
g
(
x
n
) =
g
(
x
)
,
K
¡
{
x
n
}
f
Â
ñ
u
x
,
P
¤
x
n
*x,
(
n
→∞
)
;
X
J
lim
n
→∞
k
x
n
−
x
k
= 0
,
K
¡
{
x
n
}
r
Â
ñ
u
x
,
P
¤
x
n
→
x,
(
n
→∞
)
.
Ú
n
1.
(
©
z
[13]
í
Ø
4.15)
C
⊂H
´
š
˜
4
à
8
,
T
:
C
→
C
´
š
*
Ü
N
,
K
Fix(
T
)
´
4
à
8
.
Ú
n
2.
(
©
z
[13]
Ú
n
2.37)
{
x
n
}
´
H
¥
k
.
S
,
K
{
x
n
}
•
3
f
Â
ñ
f
.
Ú
n
3.
(
©
z
[14]
Ú
n
2.1)
é
?
¿
x,y
∈H
,
±
e
¯¢
¤
á
:
(1)
k
x
+
y
k
2
≤k
x
k
2
+2
h
y,x
+
y
i
;
(2)
k
ax
+
by
k
2
=
a
(
a
+
b
)
k
x
k
2
+
b
(
a
+
b
)
k
y
k
2
−
ab
k
x
−
y
k
2
,
∀
a,b
∈
R
.
Ú
n
4.
(
©
z
[15]
Ú
n
8)
{
b
n
}
,
{
η
n
}
´
š
K
¢ê
,
{
δ
n
}
,
{
ξ
n
}
´¢ê
,
{
γ
n
}⊂
(0
,
1),
¿
…
b
n
+1
≤
(1
−
γ
n
)
b
n
+
γ
n
δ
n
,
9
b
n
+1
≤
b
n
−
η
n
+
ξ
n
,n
= 0
,
1
,
2
,
···
.
e
(1)
∞
P
n
=0
γ
n
=
∞
,(2)lim
n
→∞
ξ
n
= 0,
(3)
{
η
n
}
?
¿
÷
v
lim
k
→∞
η
n
k
= 0
f
{
η
n
k
}
%
¹
limsup
k
→∞
δ
n
k
≤
0,
K
lim
n
→∞
b
n
= 0.
Ú
n
5.
(
©
z
[13]
í
Ø
4.18)
C
⊂H
´
š
˜
4
à
8
,
T
:
C
→
C
´
š
*
Ü
N
,
{
x
n
}⊂
C
,
x
∈H
.
X
J
n
→∞
ž
,
k
x
n
*x
,
…
(
x
n
−
Tx
n
)
→
0,
K
(
I
−
T
)
x
= 0.
Ú
n
6.
(
©
z
[16]
·
K
1.78)
C
⊂H
´
š
˜
4
à
8
,¯
x
∈H
,¯
y
∈
C
,
K
¯
y
´
¯
x
3
C
þ
Ý
K
…
=
h
¯
x
−
¯
y,y
−
¯
y
i≤
0
,
∀
y
∈
C.
3.
Ì
‡
(
J
Ž
{
1.
b
{
θ
n
}⊂
[0
,
1)
,
{
s
n
}
,
{
t
n
}
,
{
α
n
}⊂
(0
,
1)
,
÷
v
s
n
+
t
n
≤
1
.
é
u
x
0
,x
1
,u
∈
C
,
Ž
{
S
“
/
ª
•
:
w
n
=
x
n
+
θ
n
(
x
n
−
x
n
−
1
)
,
y
n
=
s
n
w
n
+
t
n
Tw
n
,
x
n
+1
=
α
n
u
+(1
−
α
n
)
y
n
,n
= 0
,
1
,
2
,
···
.
(8)
½
n
1.
C
⊂H
´
š
˜
4
à
8
,
T
:
C
→
C
´
š
*
Ü
N
,
…
Fix(
T
)
6
=
∅
.
é
u
x
0
,x
1
,u
∈
C
,
S
{
x
n
}
d
Ž
{
1
S
“
)
,
¿
…
±
e
^
‡
¤
á
(1)lim
n
→∞
α
n
= 0
,
∞
P
n
=0
α
n
=
∞
,
DOI:10.12677/aam.2022.1186416090
A^
ê
Æ
?
Ð
N
_
(2)lim
n
→∞
θ
n
k
x
n
−
x
n
−
1
k
α
n
= 0,
(3)
∞
P
n
=0
(1
−
s
n
−
t
n
)
<
∞
,
(4)lim
n
→∞
1
−
s
n
−
t
n
α
n
= 0
.
K
{
x
n
}
r
Â
ñ
T
Ø
Ä:
p
,
¿
…
p
=
P
Fix(
T
)
u
.
yyy
²²²
.
1
˜
Ú
:
k
y
²
{
x
n
}
k
.
.
p
∈
Fix(
T
),
K
k
x
n
+1
−
p
k
=
k
α
n
u
+(1
−
α
n
)
y
n
−
p
k
=
k
α
n
(
u
−
p
)+(1
−
α
n
)(
y
n
−
p
)
k
≤
α
n
k
u
−
p
k
+(1
−
α
n
)
k
y
n
−
p
k
.
(9)
þ
ª
¥
k
y
n
−
p
k
=
k
s
n
w
n
+
t
n
Tw
n
−
p
k
=
k
s
n
(
w
n
−
p
)+
t
n
(
Tw
n
−
p
)+(
s
n
+
t
n
−
1)
p
k
≤
s
n
k
w
n
−
p
k
+
t
n
k
Tw
n
−
p
k
+(1
−
s
n
−
t
n
)
k
p
k
≤
s
n
k
w
n
−
p
k
+
t
n
k
w
n
−
p
k
+(1
−
s
n
−
t
n
)
k
p
k
= (
s
n
+
t
n
)
k
w
n
−
p
k
+(1
−
s
n
−
t
n
)
k
p
k
≤k
w
n
−
p
k
+(1
−
s
n
−
t
n
)
k
p
k
.
(10)
ò
(10)
ª
‘
\
(9)
ª
¥
,
Œ
k
x
n
+1
−
p
k≤
(1
−
α
n
)
k
w
n
−
p
k
+
α
n
k
u
−
p
k
+(1
−
α
n
)(1
−
s
n
−
t
n
)
k
p
k
.
(11)
þ
ª
¥
k
w
n
−
p
k
=
k
x
n
+
θ
n
(
x
n
−
x
n
−
1
)
−
p
k≤k
x
n
−
p
k
+
θ
n
k
x
n
−
x
n
−
1
k
.
(12)
ò
(12)
ª
‘
\
(11)
ª
¥
,
Œ
k
x
n
+1
−
p
k
≤
(1
−
α
n
)
k
x
n
−
p
k
+
α
n
k
u
−
p
k
+(1
−
α
n
)
θ
n
k
x
n
−
x
n
−
1
k
+(1
−
α
n
)(1
−
s
n
−
t
n
)
k
p
k
= (1
−
α
n
)
k
x
n
−
p
k
+
α
n
h
k
u
−
p
k
+(1
−
α
n
)
θ
n
k
x
n
−
x
n
−
1
k
α
n
i
+(1
−
α
n
)(1
−
s
n
−
t
n
)
k
p
k
.
DOI:10.12677/aam.2022.1186416091
A^
ê
Æ
?
Ð
N
_
3
þ
ª
¥
,
-
M
=2max
n
k
u
−
p
k
,
sup
n
≥
0
(1
−
α
n
)
θ
n
k
x
n
−
x
n
−
1
k
α
n
o
,
d
(1
−
α
n
)
<
1
Ú
^
‡
(2)
Œ
•
M<
∞
,
K
α
n
h
k
u
−
p
k
+(1
−
α
n
)
θ
n
k
x
n
−
x
n
−
1
k
α
n
i
≤
α
n
M.
¤
±
k
x
n
+1
−
p
k≤
(1
−
α
n
)
k
x
n
−
p
k
+
α
n
M
+(1
−
α
n
)(1
−
s
n
−
t
n
)
k
p
k
.
d
à
|
Ü
5
Ÿ
Œ
•
k
x
n
+1
−
p
k≤
max
n
k
x
n
−
p
k
,M
o
+(1
−
α
n
)(1
−
s
n
−
t
n
)
k
p
k
.
2
d
(1
−
α
n
)
<
1,
Œ
•
k
x
n
+1
−
p
k≤
max
n
k
x
n
−
p
k
,M
o
+(1
−
s
n
−
t
n
)
k
p
k
.
ò
þ
ª
'
u
n
?
1
8
B
,
Œ
k
x
n
+1
−
p
k≤
max
n
k
x
0
−
p
k
,M
o
+
n
X
j
=0
(1
−
s
j
−
t
j
)
k
p
k
.
(13)
(
Ü
^
‡
(3)
Œ
•
n
X
j
=0
(1
−
s
j
−
t
j
)
k
p
k≤
∞
X
n
=0
(1
−
s
n
−
t
n
)
k
p
k
<
∞
,
d
(13)
ª
Œ
•
n
k
x
n
+1
−
p
k
o
k
.
,
l
{
x
n
}
k
.
.
?
˜
Ú
,
Ï
•
k
w
n
k≤k
x
n
k
+
θ
n
k
x
n
−
x
n
−
1
k
,
¤
±
{
w
n
}
k
.
,
d
T
´
š
*
Ü
N
•
k
Tw
n
−
p
k≤
k
w
n
−
p
k
,
l
{
Tw
n
}
k
.
.
d
{
y
n
}
½
Â
Ú
s
n
+
t
n
≤
1
•
k
y
n
k≤
s
n
k
w
n
k
+
t
n
k
Tw
n
k≤
max
n
k
w
n
k
,
k
Tw
n
k
o
,
l
{
y
n
}
k
.
,
2
d
T
´
š
*
Ü
N
•
{
Ty
n
}
k
.
.
1
Ú
:
2
y
²
{
x
n
}
r
Â
ñ
p
=
P
Fix(
T
)
u
.
Ï
•
k
x
n
+1
−
p
k
2
=
k
α
n
u
+(1
−
α
n
)
y
n
−
p
k
2
=
k
(1
−
α
n
)(
y
n
−
p
)+
α
n
(
u
−
p
)
k
2
≤
(1
−
α
n
)
2
k
y
n
−
p
k
2
+2
h
α
n
(
u
−
p
)
,x
n
+1
−
p
i
≤
(1
−
α
n
)
k
y
n
−
p
k
2
+2
α
n
h
u
−
p,x
n
+1
−
p
i
.
(14)
DOI:10.12677/aam.2022.1186416092
A^
ê
Æ
?
Ð
N
_
(14)
ª
¥
1
˜
‡
Ø
ª
d
Ú
n
3
¯¢
(1)
,
…
k
y
n
−
p
k
2
=
k
s
n
w
n
+
t
n
Tw
n
−
p
k
2
=
k
s
n
(
w
n
−
p
)+
t
n
(
Tw
n
−
p
)+(
s
n
+
t
n
−
1)
p
k
2
≤k
s
n
(
w
n
−
p
)+
t
n
(
Tw
n
−
p
)
k
2
+2
h
(
s
n
+
t
n
−
1)
p,y
n
−
p
i
=
s
n
(
s
n
+
t
n
)
k
w
n
−
p
k
2
+
t
n
(
s
n
+
t
n
)
k
Tw
n
−
p
k
2
−
s
n
t
n
k
w
n
−
Tw
n
k
2
+2
h
(
s
n
+
t
n
−
1)
p,y
n
−
p
i
≤
s
n
k
w
n
−
p
k
2
+
t
n
k
Tw
n
−
p
k
2
−
s
n
t
n
k
w
n
−
Tw
n
k
2
+2(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
≤
s
n
k
w
n
−
p
k
2
+
t
n
k
w
n
−
p
k
2
−
s
n
t
n
k
w
n
−
Tw
n
k
2
+2(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
= (
s
n
+
t
n
)
k
w
n
−
p
k
2
−
s
n
t
n
k
w
n
−
Tw
n
k
2
+2(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
≤k
w
n
−
p
k
2
−
s
n
t
n
k
w
n
−
Tw
n
k
2
+2(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
.
(15)
(15)
ª
¥
1
˜
‡
Ø
ª
d
Ú
n
3
¯¢
(1)
,
1
n
‡
ª
d
Ú
n
3
¯¢
(2)
.
ò
(15)
ª
‘
\
(14)
ª
¥
,
Œ
k
x
n
+1
−
p
k
2
≤
(1
−
α
n
)
k
w
n
−
p
k
2
−
(1
−
α
n
)
s
n
t
n
k
w
n
−
Tw
n
k
2
+2(1
−
α
n
)(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
+2
α
n
h
u
−
p,x
n
+1
−
p
i
.
(16)
þ
ª
¥
k
w
n
−
p
k
2
=
k
x
n
+
θ
n
(
x
n
−
x
n
−
1
)
−
p
k
2
=
k
x
n
−
p
+
θ
n
(
x
n
−
x
n
−
1
)
k
2
=
k
x
n
−
p
k
2
+
θ
2
n
k
x
n
−
x
n
−
1
k
2
+2
θ
n
h
x
n
−
p,x
n
−
x
n
−
1
i
.
(17)
ò
(17)
ª
‘
\
(16)
ª
¥
,
Œ
k
x
n
+1
−
p
k
2
≤
(1
−
α
n
)
k
x
n
−
p
k
2
+(1
−
α
n
)
θ
2
n
k
x
n
−
x
n
−
1
k
2
+2(1
−
α
n
)
θ
n
h
x
n
−
p,x
n
−
x
n
−
1
i
−
(1
−
α
n
)
s
n
t
n
k
w
n
−
Tw
n
k
2
+2(1
−
α
n
)(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
+2
α
n
h
u
−
p,x
n
+1
−
p
i
.
(18)
3
(18)
ª
¥
-
b
n
=
k
x
n
−
p
k
2
,
η
n
= (1
−
α
n
)
s
n
t
n
k
w
n
−
Tw
n
k
2
,
γ
n
=
α
n
,
δ
n
=
(1
−
α
n
)
α
n
θ
2
n
k
x
n
−
x
n
−
1
k
2
+
2(1
−
α
n
)
α
n
θ
n
h
x
n
−
p,x
n
−
x
n
−
1
i
+
2(1
−
α
n
)
α
n
(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
+2
h
u
−
p,x
n
+1
−
p
i
.
-
ξ
n
=
α
n
δ
n
,
K
ξ
n
= (1
−
α
n
)
θ
2
n
k
x
n
−
x
n
−
1
k
2
+2(1
−
α
n
)
θ
n
h
x
n
−
p,x
n
−
x
n
−
1
i
+2(1
−
α
n
)(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
+2
α
n
h
u
−
p,x
n
+1
−
p
i
.
DOI:10.12677/aam.2022.1186416093
A^
ê
Æ
?
Ð
N
_
l
(18)
ª
Œ
U
¤
b
n
+1
≤
(1
−
γ
n
)
b
n
+
γ
n
δ
n
,
9
b
n
+1
≤
b
n
−
η
n
+
ξ
n
,n
= 0
,
1
,
2
,
···
.
d
∞
P
n
=0
α
n
=
∞
•
∞
X
n
=0
γ
n
=
∞
.
3
ξ
n
¥
,
Ï
•
lim
n
→∞
α
n
= 0
Ú
1
˜
Ú
(
Ø
{
x
n
}
k
.
,
¤
±
lim
n
→∞
2
α
n
h
u
−
p,x
n
+1
−
p
i
= 0
.
d
^
‡
(2)
•
lim
n
→∞
θ
n
k
x
n
−
x
n
−
1
k
= 0,
¤
±
lim
n
→∞
θ
2
n
k
x
n
−
x
n
−
1
k
2
= 0
,
lim
n
→∞
2(1
−
α
n
)
θ
n
h
x
n
−
p,x
n
−
x
n
−
1
i
=0
.
d
^
‡
(3)
•
lim
n
→∞
(1
−
s
n
−
t
n
) = 0,
¤
±
lim
n
→∞
(
s
n
+
t
n
−
1) = 0,
(
Ü
1
˜
Ú
(
Ø
{
y
n
}
k
.
,
l
lim
n
→∞
2(1
−
α
n
)(
s
n
+
t
n
−
1)
h
p,y
n
−
p
i
= 0
.
n
Ü
Œ
•
lim
n
→∞
ξ
n
= 0
.
(
Ü
Ú
n
4,
–
d
T
Ú
n
^
‡
(1),(2)
®
÷
v
,
e
5
¦
y
^
‡
(3)
÷
v
=
Œ
.
¯¢
þ
,
?
{
η
n
}
f
{
η
n
k
}
,
¦
lim
k
→∞
η
n
k
=0.
d
{
α
n
}
,
{
s
n
}
,
{
t
n
}⊂
(0
,
1)
Ú
η
n
½
Â
,
Œ
•
lim
k
→∞
k
w
n
k
−
Tw
n
k
k
= 0
.
(19)
d
lim
n
→∞
θ
n
k
x
n
−
x
n
−
1
k
= 0,
Œ
•
k
w
n
k
−
x
n
k
k
=
k
x
n
k
+
θ
n
k
(
x
n
k
−
x
n
k
−
1
)
−
x
n
k
k
=
θ
n
k
k
x
n
k
−
x
n
k
−
1
k→
0
,
(
k
→∞
)
.
(20)
Ï
•
{
x
n
}
k
.
,
¤
±
{
x
n
k
}
k
.
,
¤
±
d
Ú
n
2
•
•
3
{
x
n
k
}
f
{
x
n
k
j
}
÷
v
x
n
k
j
*
¯
x,
(
j
→∞
)
9
limsup
k
→∞
h
u
−
p,x
n
k
−
p
i
=lim
j
→∞
h
u
−
p,x
n
k
j
−
p
i
.
d
(20)
ª
Œ
•
,
w
n
k
j
*
¯
x,
(
j
→∞
),
¤
±
d
(19)
ª
Ú
Ú
n
5
•
¯
x
=
T
¯
x
,
=
¯
x
∈
Fix(
T
).
Ï
•
p
=
P
Fix(
T
)
u
,
¤
±
(
Ü
Ú
n
1
Ú
Ú
n
6
Œ
•
h
u
−
p,
¯
x
−
p
i≤
0.
¤
±
limsup
k
→∞
h
u
−
p,x
n
k
−
p
i
=lim
j
→∞
h
u
−
p,x
n
k
j
−
p
i
=
h
u
−
p,
¯
x
−
p
i≤
0
.
DOI:10.12677/aam.2022.1186416094
A^
ê
Æ
?
Ð
N
_
e
5
,
y
²
limsup
k
→∞
h
u
−
p,x
n
k
+1
−
p
i≤
0
.
Ï
•
k
y
n
k
−
w
n
k
k
=
k
s
n
k
w
n
k
+
t
n
k
Tw
n
k
−
w
n
k
k
=
k
t
n
k
(
Tw
n
k
−
w
n
k
)+(
s
n
k
+
t
n
k
−
1)
w
n
k
k
≤
t
n
k
k
Tw
n
k
−
w
n
k
k
+(1
−
s
n
k
−
t
n
k
)
k
w
n
k
k
.
¤
±
d
(19)
ª
,
t
n
k
⊂
(0
,
1),lim
n
→∞
(1
−
s
n
−
t
n
) = 0
±
9
{
w
n
k
}
k
.
Œ
•
lim
k
→∞
k
y
n
k
−
w
n
k
k
= 0
.
(21)
Ï
•
k
y
n
k
−
x
n
k
k≤k
y
n
k
−
w
n
k
k
+
k
w
n
k
−
x
n
k
k
,
¤
±
d
(20)
ª
Ú
(21)
ª
Œ
•
lim
k
→∞
k
y
n
k
−
x
n
k
k
= 0
.
(22)
q
Ï
•
k
x
n
k
+1
−
x
n
k
k
=
k
α
n
k
u
+(1
−
α
n
k
)
y
n
k
−
x
n
k
k≤
α
n
k
k
u
−
x
n
k
k
+(1
−
α
n
k
)
k
y
n
k
−
x
n
k
k
.
¤
±
d
lim
n
→∞
α
n
= 0,
{
x
n
k
}
k
.
Ú
(22)
ª
Œ
•
lim
k
→∞
k
x
n
k
+1
−
x
n
k
k
= 0
.
¤
±
limsup
k
→∞
h
u
−
p,x
n
k
+1
−
p
i≤
0
.
2
(
Ü
½
n
^
‡
(2),
^
‡
(4)
Ú
δ
n
½
Â
Œ
•
limsup
k
→∞
δ
n
k
≤
0
.
–
d
y
Ú
n
4
^
‡
(3)
÷
v
.
n
þ
,
d
Ú
n
4
Œ
,lim
n
→∞
b
n
= 0,
=
lim
n
→∞
x
n
=
p.
–
d
,
¤
y
²
.
5
2.
e
¡
‰
Ñ
÷
v
½
n
^
‡
ë
ê
Š
«
~
:
α
n
=
1
n
,
s
n
=
t
n
=
1
2
−
1
n
2
,
0
≤
θ
n
≤
¯
θ
n
,
Ù
¥
¯
θ
n
=
n
−
1
n
+2
,x
n
=
x
n
−
1
;
min
n
−
1
n
+2
,
10
(
n
+1)
2
k
x
n
−
x
n
−
1
k
,x
n
6
=
x
n
−
1
.
DOI:10.12677/aam.2022.1186416095
A^
ê
Æ
?
Ð
N
_
4.
Ž
{
3
Fermat-Weber
½
¯
K
¥
A^
!
Ì
‡
•
Ä
H
¥
X
e
Fermat-Weber
½
¯
K
:
=
Ï
é
x
∈
R
d
,
¦
)
min
x
n
f
(
x
) =
m
X
i
=1
ω
i
k
x
−
a
i
k
o
,
(FW)
Ù
¥
,
ω
i
>
0
,i
= 1
,
2
,
···
,m
´
-
,
a
i
∈
R
d
´
‰
½
e
:
.
¦
)
¯
K
(FW)
~
^
Ž
{
´
Weiszfeld
Ž
{
,
T
Ž
{
•
@
d
Weiszfeld
3
©
z
[17]
¥
J
Ñ
,
3
`
z
Ú
½
+
•k
X
Œ
þ
ï
Ä
,
–
8
E
3
?
Ø
Ú
¦
^
,
ä
N
Œ
ë
•
©
z
[17,18].
3
©
z
[18]
¥
,
Š
ö
E
Ø
Ä:S
“
Ž
{
¿
?
1
Â
ñ
5
©
Û
,
'
u
š
*
Ü
N
T
ä
N
Ž
{
X
e
:
T
(
·
) =
m
X
i
=1
ω
i
a
i
k·−
a
i
k
.
m
X
i
=1
a
i
k·−
a
i
k
,
x
n
+1
=
Tx
n
,n
= 0
,
1
,
2
,
···
.
(23)
Š
•
A
~
,
·
‚
•
Ä
R
3
˜
m
¥
,
m
= 8
œ
/
,
-
A
=
{
a
1
,a
2
,
···
,a
8
}
,
A
=
010010010010
001010001010
000010101010
,
-
ω
i
≡
1
,i
=1
,
2
,
···
,
8.
d
ž
¯
K
(FW)
£
ã
´
R
3
˜
m
¥
,
¦
•
N
8
‡
º:
å
l
Ú
•
:
‹
I
,
d
á
N
A
Û
•
£
´
•
,
•
`
)
´
x
∗
= (5
,
5
,
5)
T
.
e
5
,
|
^
Ž
{
1(
P
Š
A1)
¦
)
T
¯
K
.
s
n
,t
n
,α
n
,
¯
θ
n
,θ
n
ë
ê
Š
Ó
5
2,
š
*
Ü
N
T
Ó
(23)
ª
,
Ð
©
Š
x
0
,x
1
d
Matlab
¼
ê
10
∗
rand
(3
,
1)
‘
Å
)
,
u
=0
.
5(
x
0
+
x
1
),
•
Œ
S
“g
ê
1000
g
,
Ø
½
O
K
•
k
x
n
+1
−
x
n
k≤
10
−
3
.
3
MatlabR2020b
‚
¸
e
,A1
†
©
z
[12]
Ž
{
(
P
Š
A2)
ê
Š
é
'
(
J
„
ã
1
§
ã
2.
Ù
¥
,A2
ë
ê
À
•
,
β
n
=
1
100(
n
+1)
2
,
α
n
=
1
n
+1
,
u
= 0
.
9
x
0
,0
≤
θ
n
≤
¯
θ
n
,
¯
θ
n
=
n
−
1
n
+3
,x
n
=
x
n
−
1
,
min
n
−
1
n
+3
,
10
(
n
+1)
2
k
x
n
−
x
n
−
1
k
,x
n
6
=
x
n
−
1
,
Ù
{
Ó
A1.
3
Ð
©
:
ƒ
Ó
,
Ø
½
O
K
ƒ
Ó
c
J
e
,
l
ã
1
Œ
±
w
Ñ
,A1,A2
Ñ
Â
ñ
u
•
`
)
x
∗
=
(5
,
5
,
5)
T
.
l
ã
2
Œ
±
w
Ñ
,A1
S
“g
ê
'
A2
,
ù
N
y
A1
ƒ
'
ƒ
c
Ž
{
ä
k
˜
½
`
³
.
DOI:10.12677/aam.2022.1186416096
A^
ê
Æ
?
Ð
N
_
Figure1.
Iterationprocess
ã
1.
S
“
L
§
ã
Figure2.
Errorcomparison
ã
2.
Ø
é
'
ã
5.
o
(
†
Ð
"
©
J
Ñ
Hilbert
˜
m
¥
.
5
2
Â
Mann-Halpern
Ž
{
,
3
˜
½
^
‡
e
y
²
T
Ž
{
r
Â
ñ
5
.
ò
Ž
{
A^u
¦
)ä
N
¯
K
,
|
^
ê
Š
¢
?
1
`
²
,
¿
†
©
z
[12]
¥
Ž
{
?
1
ê
Š
é
'
,
N
y
T
Ž
{
ä
k
˜
½
`
³
,
l
3
¢
S
A^
¥
ä
k
•
r
(
¹
5
.
3
™
5
ï
Ä
¥
,
·
‚
„
ò
ï
Ä
T
Ž
{
Â
ñ
„
Ç
.
ë
•
©
z
[1]Mann,W.R.(1953)MeanValueMethodsinIteration.
ProceedingsoftheAmericanMathe-
maticalSociety
,
4
,993-993.https://doi.org/10.2307/2031845
[2]Reich,S.(1979)WeakConvergenceTheoremsforNonexpansiveMappingsinBanachSpaces.
JournalofMathematicalAnalysisandApplications
,
67
,274-276.
https://doi.org/10.1016/0022-247X(79)90024-6
[3]Halpern,B.(1967)FixedPointsofNonexpanding Maps.
BulletinoftheAmericanMathemat-
icalSociety
,
73
,957-961.https://doi.org/10.1090/S0002-9904-1967-11864-0
[4]Wittmann,R.(1992)ApproximationofFixedPointsofNonexpansiveMappings.
Archivder
Mathematik
,
58
,486-491.https://doi.org/10.1007/BF01190119
[5]Polyak,B.T.(1964)SomeMethodsofSpeedinguptheConvergenceofIterationMethods.
USSRComputationalMathematicsandMathematicalPhysics
,
4
,1-17.
https://doi.org/10.1016/0041-5553(64)90137-5
[6]Tan,B.,Zhou,Z.andQin,X.(2020)AcceleratedProjection-BasedForward-BackwardSplit-
tingAlgorithmsfor MonotoneInclusion Problems.
JournalofAppliedAnalysisandComputa-
tion
,
10
,2184-2197.https://doi.org/10.11948/20190363
DOI:10.12677/aam.2022.1186416097
A^
ê
Æ
?
Ð
N
_
[7]Tan, B.,Xu, S.and Li,S.(2020) ModifiedInertialHybridand ShrinkingProjectionAlgorithms
forSolvingFixedPointProblems.
Mathematics
,
8
,Article236.
https://doi.org/10.3390/math8020236
[8]Maing´e,P.E.(2008)ConvergenceTheoremsforInertialKM-TypeAlgorithms.
Journalof
ComputationalandAppliedMathematics
,
219
,223-236.
https://doi.org/10.1016/j.cam.2007.07.021
[9]Combettes,P.L.andGlaudin,L.E.(2017)Quasi-NonexpansiveIterationsontheAffineHull
ofOrbits:FromMann’sMeanValueAlgorithmtoInertialMethods.
SIAMJournalonOpti-
mization
,
27
,2356-2380.https://doi.org/10.1137/17M112806X
[10]Shehu, Y.andGibali,A. (2020) InertialKrasnoselskii-MannMethodinBanach Spaces.
Math-
ematics
,
8
,Article638.https://doi.org/10.3390/math8040638
[11]Artsawang,N.andUngchittrakool,K. (2020)InertialMann-TypeAlgorithmfora Nonexpan-
siveMappingtoSolveMonotoneInclusionandImageRestorationProblems.
Symmetry
,
12
,
Article750.https://doi.org/10.3390/sym12050750
[12]Tan,B.,Zhou, Z.and Li,S.(2020) StrongConvergenceofModifiedInertialMannAlgorithms
forNonexpansiveMappings.
Mathematics
,
8
,Article462.
https://doi.org/10.3390/math8040462
[13]Bauschke, H.H.and Combettes,P.L. (2011)Convex AnalysisandMonotone OperatorTheory
inHilbertSpaces.Springer,NewYork.https://doi.org/10.1007/978-1-4419-9467-71
[14]Kanzow,C.andShehu,Y.(2017)GeneralizedKrasnoselskii-Mann-TypeIterationsforNon-
expansiveMappingsinHilbertSpaces.
ComputationalOptimizationandApplications
,
67
,
595-620.https://doi.org/10.1007/s10589-017-9902-0
[15]He, S. and Yang, C. (2013) Solving the Variational Inequality Problem Defined on Intersection
ofFiniteLevelSets.
AbstractandAppliedAnalysis
,
2013
,ArticleID:942315.
https://doi.org/10.1155/2013/942315
[16]Mordukhovich,B.S.andNam,N.M.(2013)AnEasyPathtoConvexAnalysisandAppli-
cations.In:Krantz,St.G.,Ed.,
SynthesisLecturesonMathematicsandStatistics
,Springer,
Cham,1-218.https://doi.org/10.1007/978-3-031-02406-1
[17]Weiszfeld,E.(1937)Surlepointpourlequellasommedesdistancesdenpointsdonn
W
sest
minimum.
TohokuMathematicalJournal,FirstSeries
,
43
,355-386.
[18]Beck,A.andSabach,S.(2015)Weiszfeld’sMethod:OldandNewResults.
JournalofOpti-
mizationTheoryandApplications
,
164
,1-40.https://doi.org/10.1007/s10957-014-0586-7
DOI:10.12677/aam.2022.1186416098
A^
ê
Æ
?
Ð
map