设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
AdvancesinAppliedMathematics
A^
ê
Æ
?
Ð
,2022,11(7),4979-4989
PublishedOnlineJuly2022inHans.//www.abtbus.com/journal/aam
https://doi.org/10.12677/aam.2022.117522
˜
a
Í
Ü
k
-Hessian
X
Ú
š
‚
5
»
•
k
-
à
)
ì
C
1
•
•••
ÿÿÿ
∗
Ü
“
‰
Œ
Æ
§
ê
Æ
†
Ú
O
Æ
§
[
‹
=
²
Â
v
F
Ï
µ
2022
c
6
25
F
¶
¹
^
F
Ï
µ
2022
c
7
20
F
¶
u
Ù
F
Ï
µ
2022
c
7
27
F
Á
‡
Ä
u
I
þ
Ø
Ä:½
n
§
©
Ì
‡
ï
Ä
˜
a
Í
Ü
k
-Hessian
X
Ú
š
‚
5
»
•
k
-
à
)
ì
C
1
•
"
'
…
c
Í
Ü
k
-Hessian
X
Ú
§
š
‚
5
»
•
k
-
à
)
§
ì
C
1
•
§
Ø
Ä:½
n
TheAsymptoticBehaviorofNontrivial
Radial
k
-ConvexSolutionsforaClassof
Coupled
k
-HessianSystem
CunyanYue
∗
CollegeofMathematicsandStatistics,NorthwestNormalUniversity,LanzhouGansu
Received:Jun.25
th
,2021;accepted:Jul.20
th
,2022;published:Jul.27
th
,2022
Abstract
Basedonthefixed-pointtheoremincone,westudytheasymptoticbehaviorofnon-
trivialradial
k
-convexsolutionsforaclassofcoupled
k
-Hessiansystem.
∗
Email:yuecunyan@163.com
©
Ù
Ú
^
:
•
ÿ
.
˜
a
Í
Ü
k
-Hessian
X
Ú
š
‚
5
»
•
k
-
à
)
ì
C
1
•
[J].
A^
ê
Æ
?
Ð
,2022,11(7):
4979-4989.DOI:10.12677/aam.2022.117522
•
ÿ
Keywords
Coupled
k
-HessianSystem,NontrivialRadial
k
-ConvexSolution,Asymptotic
Behavior,Fixed-PointTheorem
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.
0
©
Ì
‡
•
Ä
˜
a
Í
Ü
k
-Hessian
X
Ú
S
k
(
D
2
u
1
) =
λ
1
f
1
(
−
u
2
)inΩ
,
S
k
(
D
2
u
2
) =
λ
2
f
2
(
−
u
3
)inΩ
,
.
.
.
S
k
(
D
2
u
n
) =
λ
n
f
n
(
−
u
1
)inΩ
,
u
1
=
u
2
=
···
=
u
n
= 0on
∂
Ω
,
(1
.
1)
š
‚
5
»
•
k
-
à
)
•
3
5
Ú
ì
C
1
•
,
Ù
¥
λ
i
´
ë
ê
,
f
i
∈
C
([0
,
+
∞
)
,
[0
,
+
∞
)),Ω=
{
x
∈
R
N
:
|
x
|≤
1
}
(
N
≥
2),
u
i
∈
C
2
(
R
N
),
D
2
u
i
´
ë
Y
‡
©
¼
ê
u
i
Hessian
Ý
,
S
k
(
λ
(
D
2
u
i
))
´
1
k
Ð
é
¡
õ
‘
ª
,
´
Hessian
Ý
D
2
u
i
¤
k
k
×
k
Ì
f
ª
Ú
,
i
= 1
,
2
,
···
,n
.
˜
„
/
,
·
‚
½
Â
X
e
k
-Hessian
Ž
f
:
S
k
(
λ
(
D
2
u
)) =
X
1
≤
j
1
<...
k
≤
N
λ
j
1
λ
j
2
...λ
j
k
,k
= 1
,
2
,
···
,N.
A
O
/
,
k
=1
ž
,
k
-Hessian
Ž
f
ò
z
•
Laplace
Ž
f
S
1
(
λ
(
D
2
u
))=
N
P
i
=1
λ
i
=∆
u
,
•
„
[1,2];
k
=
N
ž
,
k
-Hessian
Ž
f
ò
z
•
Monge-Amp`ere
Ž
f
S
N
(
λ
(
D
2
u
))=
N
Q
i
=1
=det(
λ
(
D
2
u
)),
•
„
[3–7].
C
c
5
,Laplace
¯
K
Ú
Monge-Amp`ere
¯
K
®
2
•
A^u
ê
Æ
†A^
ê
Æ
Ì
‡
©
|
.
k
'
Laplace
¯
K
Ú
Monge-Amp`ere
¯
K
)
•
3
5
!
Ø
•
3
5
!
õ
)
5
!
•
˜
5
Ú
ì
C
-
½
5
ƒ
'
(
J
•
„
©
z
[1–7].
A
O
/
,
3
2021
c
,
¾
{
r
[7]
¥
$
^
I
þ
Ø
Ä:½
n
DOI:10.12677/aam.2022.1175224980
A^
ê
Æ
?
Ð
•
ÿ
Monge-Amp`ere
X
Ú
det(
D
2
u
1
) =
λ
1
f
1
(
−
u
2
)inΩ
,
det(
D
2
u
2
) =
λ
2
f
2
(
−
u
3
)inΩ
,
.
.
.
det(
D
2
u
n
) =
λ
n
f
n
(
−
u
1
)inΩ
,
u
1
=
u
2
=
···
=
u
n
= 0on
∂
Ω
,
š
‚
5
»
•
à
)
•
3
5
Ú
ì
C
1
•
.
k
-Hessian
•
§
´
˜
a
š
‚
5
‡
©•
§
,
3
A
Û
Æ
!
6
N
å
Æ
Ú
Ù
¦
A^
Æ
‰
¥
k
X
-
‡
A^
.
N
õ
Æ
ö
Ï
L
ü
NS
“
•{
!
þ
e
)
•{
!
C
©•{
!
Ø
Ä:½
n
±
9
£
Ä
²
¡
•
{
Ã
õ
k
'
k
-Hessian
•
¯
K
)
•
3
5
!
Ø
•
3
5
!
õ
)
5
!
•
˜
5
Ú
ì
C
-
½
5
`
D
(
J
,
•
„
©
z
[8–12].
~
X
,
3
2019
c
,
¾
{
r
[8]
¥
$
^
I
þ
Ø
Ä:½
n
k
-Hessian
X
Ú
S
k
(
D
2
u
1
) =
λ
1
f
1
(
−
u
2
)inΩ
,
S
k
(
D
2
u
2
) =
λ
2
f
2
(
−
u
1
)inΩ
,
u
1
=
u
2
= 0on
∂
Ω
,
š
‚
5
»
•
à
)
•
3
5
Ú
ì
C
1
•
.
É
©
z
[7]
Ú
[8]
é
u
,
©
ò
Ï
L
Ø
Ä:½
n
ï
Ä
Í
Ü
k
-Hessian
X
Ú
(1.1)
š
‚
5
»
•
k
-
à
)
•
3
5
9ì
C
1
•
.
©
Ì
‡
ó
Š
´
é
©
z
[7,8]
í
2
.
2.
ý
•
£
!
‰
Ñ
˜
7
‡
Ú
n
Ú
Ì
‡
ó
ä
.
é
?
¿
k
= 1
,
2
,
···
,N
,
½
Â
8
Ü
Γ
k
:=
{
ν
∈
R
N
:
S
k
(
ν
)
>
0
,
1
≤
k
≤
N
}⊂
R
N
.
½
Â
1.1.
([13])
Ω
´
R
N
¥
˜
‡
k
.
m
8
,
e
é
?
¿
x
∈
Ω,Hessian
Ý
A
•
þ
ν
1
,ν
2
,
···
,ν
N
÷
v
^
‡
(
ν
1
,ν
2
,
···
,ν
N
)
∈
Γ
k
,
K
¡
u
(
x
)
∈
C
2
(Ω)
´
k
-
à
¼
ê
.
Ú
n
2.1
([14])
v
(
r
)
∈
C
2
[0
,R
)
´
˜
‡
»
•
é
¡
¼
ê
…
v
0
(0)= 0,
K
¼
ê
u
(
|
x
|
)=
v
(
r
)
∈
C
2
(
B
R
),
r
=
|
x
|
,
…
λ
(
D
2
u
) =
(
v
00
(
r
)
,
v
0
(
r
)
r
,...,
v
0
(
r
)
r
,r
∈
(0
,R
)
,
(
v
00
(0)
,v
00
(0)
,...,v
00
(0))
,r
= 0;
S
k
(
λ
(
D
2
u
)) =
C
k
−
1
N
−
1
v
00
(
r
)+
v
0
(
r
)
r
k
−
1
+
C
k
N
−
1
v
0
(
r
)
r
k
,r
∈
(0
,R
)
,
C
k
N
(
v
00
(0))
k
,r
= 0
,
DOI:10.12677/aam.2022.1175224981
A^
ê
Æ
?
Ð
•
ÿ
Ù
¥
r
=
|
x
|
=
s
N
P
i
=1
x
2
i
,
B
R
:=
{
x
∈
R
N
:
|
x
|
}
,
C
k
N
=
N
!
k
!(
N
−
k
)!
.
Ï
L
Ú
n
3.1,
·
‚
Œ
±
ò
k
-Hessian
X
Ú
(1.1)
=
z
•
X
e
~
‡
©
>
Š
¯
K
r
N
−
k
k
u
0
1
(
r
)
k
0
=
λ
1
(
C
k
−
1
N
−
1
)
−
1
r
N
−
1
f
1
(
−
u
2
(
r
))
,
0
1
,
r
N
−
k
k
u
0
2
(
r
)
k
0
=
λ
2
(
C
k
−
1
N
−
1
)
−
1
r
N
−
1
f
2
(
−
u
3
(
r
))
,
0
1
,
.
.
.
r
N
−
k
k
u
0
n
(
r
)
k
0
=
λ
n
(
C
k
−
1
N
−
1
)
−
1
r
N
−
1
f
n
(
−
u
1
(
r
))
,
0
1
,
u
0
i
(0) =
u
i
(0) = 0
,i
= 1
,
2
,
···
,n.
(2
.
1)
Š
C
†
v
i
=
−
u
i
(
i
= 1
,
2
,
···
,n
),
K
Œ
ò
~
‡
©
X
Ú
(2.1)
=
z
•
X
e
~
‡
©
X
Ú
r
N
−
k
k
−
v
0
1
(
r
)
k
0
=
λ
1
(
C
k
−
1
N
−
1
)
−
1
r
N
−
1
f
1
(
v
2
(
r
))
,
0
1
,
r
N
−
k
k
−
v
0
2
(
r
)
k
0
=
λ
2
(
C
k
−
1
N
−
1
)
−
1
r
N
−
1
f
2
(
v
3
(
r
))
,
0
1
,
.
.
.
r
N
−
k
k
−
v
0
n
(
r
)
k
0
=
λ
n
(
C
k
−
1
N
−
1
)
−
1
r
N
−
1
f
n
(
v
1
(
r
))
,
0
1
,
v
0
i
(0) =
v
i
(0) = 0
,i
= 1
,
2
,
···
,n.
(2
.
2)
K
(
u
1
,u
2
) = (
−
v
1
,
−
v
2
)
´
k
-Hesian
X
Ú
(1.1)
»
•
)
…
=
(
v
1
,v
2
)
´
È
©
X
Ú
v
1
(
r
) =
λ
1
k
1
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
2
(
s
))
ds
1
k
dτ,
v
2
(
r
) =
λ
1
k
2
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
2
(
v
3
(
s
))
ds
1
k
dτ,
.
.
.
v
n
(
r
) =
λ
1
k
n
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
n
(
v
1
(
s
))
ds
1
k
dτ.
(2
.
3)
˜
‡
)
.
½
Â
¼
ê
˜
m
E
=
C
[0
,
1],
K
U
‰
ê
k
x
k
=max
0
≤
t
≤
1
|
x
(
t
)
|
¤
Banach
˜
m
.
½
Â
P
:=
n
x
∈
E
:
x
(
t
)
≥
0
,t
∈
[0
,
1]
,x
(
t
)
≥
θ
k
x
k
,t
∈
[
θ,
1
−
θ
]
o
⊂
E
´
E
þ
˜
‡
I
,
Ù
¥
θ
∈
(0
,
1
2
).
w
,
,
P
´
E
þ
˜
‡
5
I
.
DOI:10.12677/aam.2022.1175224982
A^
ê
Æ
?
Ð
•
ÿ
é
?
¿
v
∈
P
,
·
‚
½
Â
Ž
f
T
i
:
P
→
E
(
i
= 1
,
2
,
···
,n
)
•
(
T
1
v
)(
t
) =
λ
1
k
1
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
(
s
))
ds
1
k
dτ,
(
T
2
v
)(
t
) =
λ
1
k
2
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
2
(
v
(
s
))
ds
1
k
dτ,
.
.
.
(
T
n
v
)(
t
) =
λ
1
k
n
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
n
(
v
(
s
))
ds
1
k
dτ.
(2
.
4)
½
˜
‡E
Ü
Ž
f
f
T
1
=
T
1
T
2
···
T
n
.
Ú
n
2.2
([6])
Ž
f
T
i
(
i
=1
,
2
,,n
)
´
š
K
à
¼
ê
,
Ï
d
d
Arzel`
a
½
n
Œ
•
T
i
:
P
→
E
(
i
=
1
,
2
,
···
,n
)
´
ë
Y
Ž
f
.
?
˜
Ú
/
,
d
T
½
Â
Œ
•
T
•
´
˜
‡
ë
Y
Ž
f
.
d
©
z
[5]
Œ
•
,
λ
1
=
λ
1
=
···
=
λ
n
ž
,(
v
1
,v
2
,
···
,v
n
)
∈
C
1
[0
,
1]
×
C
1
[0
,
1]
×···×
C
1
[0
,
1]
|{z}
n
´
È
©
X
Ú
(2.3)
)
…
=
(
v
1
,v
2
,
···
,v
n
)
∈
P
\{
0
}×
P
\{
0
}×···×
P
\{
0
}
|{z}
n
¿
…
÷
v
v
1
=
T
1
v
2
,v
2
=
T
2
v
3
,
···
,v
n
=
T
n
v
1
.
ù
L
²
e
v
1
∈
P
\{
0
}
´
f
T
1
˜
‡
Ø
Ä:
,
@
o
·
‚
½
Â
v
2
=
T
2
v
3
,
···
,v
n
=
T
n
v
1
ž
,(
v
1
,v
2
,
···
,v
n
)
∈
C
1
[0
,
1]
×
C
1
[0
,
1]
×···×
C
1
[0
,
1]
|
{z}
n
´
È
©
X
Ú
(2.3)
˜
‡
)
.
,
˜
•
¡
,
e
(
v
1
,v
2
,
···
,v
n
)
∈
C
1
[0
,
1]
×
C
1
[0
,
1]
×···×
C
1
[0
,
1]
|{z}
n
´
È
©
X
Ú
(2.3)
˜
‡
)
,
K
v
1
´
ë
Y
Ž
f
f
T
1
˜
‡
š
"
Ø
Ä:
.
Ï
d
,
‡
y
È
©
X
Ú
(2.3)
k
˜
‡
)
,
·
‚
•
I
y
ë
Y
Ž
f
f
T
1
k
˜
‡
š
"
Ø
Ä:
=
Œ
.
a
q
,
·
‚
Œ
±
½
Â
Ù
¦
E
Ü
Ž
f
,
X
e
:
f
T
2
=
T
2
T
3
···
T
n
T
1
,
f
T
3
=
T
3
···
T
n
T
1
T
2
,
.
.
.
f
T
n
=
T
n
···
T
1
T
2
T
3
.
e
¡
‰
Ñ
©
Ì
‡
ï
Ä
ó
ä
.
Ú
n
2.3
([15])
-
Ω
1
Ú
Ω
2
´
Banach
˜
m
E
þ
ü
‡
k
.
m
8
,
…
0
∈
Ω,
¯
Ω
1
⊂
Ω
2
,
-
P
:
P
∩
(
¯
Ω
2
\
Ω
1
)
→
P
´
˜
‡
ë
Y
Ž
f
,
Ù
¥
P
´
E
þ
˜
‡
I
.
e
(i)
k
Tx
k≤k
x
k
,
∀
x
∈
P
∩
∂
Ω
1
,
…
k
Tx
k≥k
x
k
,
∀
x
∈
P
∩
∂
Ω
2
;
½
(ii)
k
Tx
k≥k
x
k
,
∀
x
∈
P
∩
∂
Ω
1
,
…
k
Tx
k≤k
x
k
,
∀
x
∈
P
∩
∂
Ω
2
.
K
T
3
P
∩
(
¯
Ω
2
\
Ω
1
)
¥–
k
˜
‡
Ø
Ä:
.
DOI:10.12677/aam.2022.1175224983
A^
ê
Æ
?
Ð
•
ÿ
3.
Ì
‡
(
J
Ä
k
,
é
i
= 1
,
2
,
···
,n
,
·
‚
‰
Ñ
X
e
P
Ò
:
f
0
i
=lim
x
→
0
f
(
x
)
x
k
,f
∞
i
=lim
x
→∞
f
(
x
)
x
k
.
½
n
3.1
b
f
i
∈
C
([0
,
+
∞
)
,
[0
,
+
∞
)),
…
f
0
i
=0
,f
∞
i
=
∞
,
K
é
λ
i
>
0,
k
-Hessian
X
Ú
(1.1)
•
3
˜
‡
š
‚
5
»
•
à
)
u
= (
u
λ
1
,u
λ
2
,
···
,u
λ
n
)
÷
v
lim
λ
i
→
0
+
k
u
λ
i
k
=
∞
,
Ù
¥
i
= 1
,
2
,
···
,n
.
y
²
:
é
i
= 1
,
2
,
···
,n
,
·
‚
•
I
y
²
é
λ
i
>
0,
È
©
X
Ú
(2.3)
•
3
˜
‡
)
v
= (
v
λ
1
,v
λ
2
,
···
,v
λ
n
)
÷
v
lim
λ
i
→
0
+
k
v
λ
i
k
=
∞
=
Œ
.
Ï
•
f
0
i
= 0,
K
•
3
˜
‡
~
ê
r
1
>
0
¦
é
?
¿
ε>
0,
k
f
1
(
v
2
)
≤
εv
k
2
,
∀
0
≤
v
2
≤
r
1
,
f
2
(
v
3
)
≤
εv
k
3
,
∀
0
≤
v
3
≤
r
1
,
.
.
.
f
n
(
v
1
)
≤
εv
k
1
,
∀
0
≤
v
1
≤
r
1
,
Ù
¥
ε
÷
v
(
λ
1
λ
2
···
λ
n
)
1
k
ε
n
k
≤
1
.
(3
.
1)
Ï
d
,
é
v
i
∈
P
∩
∂
Ω
r
1
,
i
= 1
,
2
,
···
,n
,Ω
r
1
=
{
x
∈
R
N
:
k
x
k≤
r
1
}
,
k
(
T
1
v
2
)(
t
) =
λ
1
k
1
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
2
(
s
))
ds
1
k
dτ
≤
λ
1
k
1
Z
1
0
Z
1
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
2
(
s
))
ds
1
k
dτ
≤
λ
1
k
1
Z
1
0
Z
1
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
εv
k
2
(
s
)
ds
1
k
dτ
≤
λ
1
k
1
ε
1
k
k
C
k
−
1
N
−
1
1
k
k
v
2
k
Z
1
0
Z
1
0
τ
k
−
N
s
N
−
1
ds
1
k
dτ
≤
λ
1
k
1
ε
1
k
k
v
2
k
,t
∈
[0
,
1]
,
Ó
n
Œ
,
(
T
2
v
3
)(
t
) =
λ
1
k
2
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
2
(
v
3
(
s
))
ds
1
k
dτ
≤
λ
1
k
2
ε
1
k
k
v
3
k
,t
∈
[0
,
1]
,
.
.
.
(
T
n
v
1
)(
t
) =
λ
1
k
n
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
n
(
v
1
(
s
))
ds
1
k
dτ
≤
λ
1
k
n
ε
1
k
k
v
1
k
,t
∈
[0
,
1]
.
DOI:10.12677/aam.2022.1175224984
A^
ê
Æ
?
Ð
•
ÿ
d
f
T
1
½
Â
Ú
(3.1)
Œ
•
,
k
f
T
1
v
1
k
=
k
T
1
T
2
···
T
n
v
1
k
≤
λ
1
k
1
ε
1
k
k
T
2
···
T
n
v
1
k
≤
(
λ
1
λ
2
)
1
k
ε
2
k
k
T
3
···
T
n
v
1
k
.
.
.
≤
(
λ
1
λ
2
···
λ
n
)
1
k
ε
n
k
k
v
1
k
≤k
v
1
k
,v
1
∈
P
∩
∂
Ω
r
1
.
(3
.
2)
Ï
•
f
∞
i
=
∞
,
K
•
3
˜
‡
~
ê
R
0
(0
1
0
)
¦
é
?
¿
~
ê
η>
0,
k
f
1
(
v
2
)
≥
ηv
k
2
,
∀
v
2
≥
R
0
,
f
2
(
v
3
)
≥
ηv
k
3
,
∀
v
3
≥
R
0
,
.
.
.
f
n
(
v
1
)
≥
ηv
k
1
,
∀
v
1
≥
R
0
,
Ù
¥
η
÷
v
(
λ
1
λ
2
···
λ
n
)
1
k
ηk
C
k
−
1
N
−
1
n
k
(1
−
θ
)
n
(
k
−
N
)
k
θ
n
(2
k
+
N
−
1)
k
≥
1
.
(3
.
3)
-
R
1
>
max
{
R
0
,
R
0
θ
}
,
K
é
v
i
∈
P
∩
∂
Ω
R
1
,
i
= 1
,
2
,
···
,n
,Ω
R
1
=
{
x
∈
R
N
:
k
x
k≤
R
1
}
,
k
v
i
(
t
)
≥
θ
k
v
i
k
=
θR
1
≥
R
0
,t
∈
[
θ,
1
−
θ
]
.
Ï
d
,
é
v
i
∈
P
∩
∂
Ω
R
1
,
k
(
T
1
v
2
)(
t
) =
λ
1
k
1
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
2
(
s
))
ds
1
k
dτ
≥
λ
1
k
1
Z
1
1
−
θ
Z
1
−
θ
θ
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
2
(
s
))
ds
!
1
k
dτ
≥
λ
1
k
1
Z
1
1
−
θ
Z
1
−
θ
θ
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
ηv
k
2
(
s
)
ds
!
1
k
dτ
≥
λ
1
k
1
Z
1
1
−
θ
Z
1
−
θ
θ
k
(1
−
θ
)
k
−
N
θ
N
−
1
(
C
k
−
1
N
−
1
)
−
1
η
(
θ
k
v
2
k
)
k
ds
!
1
k
dτ
=
λ
1
ηk
C
k
−
1
N
−
1
1
k
(1
−
θ
)
k
−
N
k
θ
2
k
+
N
−
1
k
k
v
2
k
,t
∈
[0
,
1]
,
DOI:10.12677/aam.2022.1175224985
A^
ê
Æ
?
Ð
•
ÿ
Ó
n
Œ
,
(
T
2
v
3
)(
t
) =
λ
1
k
2
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
2
(
v
3
(
s
))
ds
1
k
dτ
≥
λ
2
ηk
C
k
−
1
N
−
1
1
k
(1
−
θ
)
k
−
N
k
θ
2
k
+
N
−
1
k
k
v
3
k
,t
∈
[0
,
1]
,
.
.
.
(
T
n
v
1
)(
t
) =
λ
1
k
n
Z
1
t
Z
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
n
(
v
1
(
s
))
ds
1
k
dτ
≥
λ
n
ηk
C
k
−
1
N
−
1
1
k
(1
−
θ
)
k
−
N
k
θ
2
k
+
N
−
1
k
k
v
1
k
,t
∈
[0
,
1]
.
d
f
T
1
½
Â
Ú
(3.3)
Œ
•
,
k
f
T
1
v
1
k
=
k
T
1
T
2
···
T
n
v
1
k
≥
λ
1
ηk
C
k
−
1
N
−
1
1
k
(1
−
θ
)
k
−
N
k
θ
2
k
+
N
−
1
k
k
T
2
···
T
n
v
1
k
≥
(
λ
1
λ
2
)
1
k
ηk
C
k
−
1
N
−
1
2
k
(1
−
θ
)
2(
k
−
N
)
k
θ
2(2
k
+
N
−
1)
k
k
T
3
···
T
n
v
1
k
.
.
.
≥
(
λ
1
λ
2
···
λ
n
)
1
k
ηk
C
k
−
1
N
−
1
n
k
(1
−
θ
)
n
(
k
−
N
)
k
θ
n
(2
k
+
N
−
1)
k
k
v
1
k
≥k
v
1
k
,v
1
∈
P
∩
∂
Ω
R
1
.
(3
.
4)
(
Ü
Ú
n
2.3
Œ
•
,
Ž
f
f
T
1
k
˜
‡
Ø
Ä:
v
1
∈
P
∩
(
¯
Ω
R
1
\
Ω
r
1
).
½
Â
T
2
v
3
=
v
2
,
···
,T
n
v
1
=
v
n
,
K
(
v
1
,v
2
,
···
,v
n
)
´
~
‡
©
X
Ú
(2.2)
˜
‡
š
‚
5
»
•
]
)
.
Ó
n
,
·
‚
•
Œ
±
Ñ
Ž
f
f
T
2
k
˜
‡
Ø
Ä:
v
2
∈
P
∩
(
¯
Ω
R
1
\
Ω
r
1
),
···
,
Ž
f
f
T
n
k
˜
‡
Ø
Ä:
v
n
∈
P
∩
(
¯
Ω
R
1
\
Ω
r
1
).
e
5
,
·
‚
y
²
λ
i
→
0
+
ž
,
k
v
λ
i
k→
+
∞
,i
=1
,
2
,
···
,n
.
b
•
3
~
ê
β
i
>
0
Ú
S
λ
im
→
0
+
¦
k
v
λ
im
k≤
β
i
(
m
= 1
,
2
,
···
)
.
K
S
{k
v
λ
im
k}
•
3
˜
‡
Â
ñ
u
~
ê
α
i
(0
≤
α
i
≤
β
i
)
f
S
,
•
{
B
å
„
,
·
‚
b
{k
v
λ
im
k}
Â
ñ
u
α
i
.
(i)
e
α
i
>
0,
K
é
u
¿
©
Œ
m
(
m>k
),
k
{k
v
iλ
im
k}
>
α
i
2
.
-
F
1
= max
{
f
1
(
v
2
)
,r
1
≤k
v
2
k≤
R
1
}
,
F
1
= max
{
f
2
(
v
3
)
,r
1
≤k
v
3
k≤
R
1
}
,
.
.
.
F
1
= max
{
f
n
(
v
1
)
,r
1
≤k
v
1
k≤
R
1
}
.
DOI:10.12677/aam.2022.1175224986
A^
ê
Æ
?
Ð
•
ÿ
d
T
1
v
2
=
v
1
,T
2
v
3
=
v
2
,
···
,T
n
v
1
=
v
1
Œ
•
1
λ
1
k
1
m
=
k
R
1
t
R
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
2
(
s
))
ds
1
k
dτ
k
k
v
1
λ
1
m
k
≤
k
R
1
0
R
1
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
F
1
ds
1
k
k
k
v
1
λ
1
m
k
≤
F
1
k
1
|
k
2
k
−
N
|
k
v
1
λ
1
m
k
≤
2
kF
1
k
1
|
2
k
−
N
|
α
1
,
1
λ
1
k
2
m
=
k
R
1
t
R
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
2
(
v
3
(
s
))
ds
1
k
dτ
k
k
v
2
λ
2
m
k
≤
2
kF
1
k
2
|
2
k
−
N
|
α
2
,
.
.
.
1
λ
1
k
nm
=
k
R
1
t
R
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
n
(
v
1
(
s
))
ds
1
k
dτ
k
k
v
nλ
nm
k
≤
2
kF
1
k
n
|
2
k
−
N
|
α
n
.
(3
.
5)
(3.5)
L
²
λ
im
→
+
∞
(
m
→
+
∞
),
ù
†
λ
im
→
0
+
g
ñ
,
i
= 1
,
2
,
···
,n
.
(ii)
e
α
i
= 0,
K
é
u
¿
©
Œ
m
(
m>k
),
k
{k
v
iλ
im
k}→
0.
d
f
0
i
= 0
Œ
•
,
é
?
¿
δ>
0,
•
3
˜
‡
~
ê
r
0
>
0,
¦
f
1
(
v
2
λ
2
m
)
≤
δv
k
2
λ
2
m
,
∀
0
≤
v
2
λ
2
m
≤
r
0
,
f
2
(
v
3
λ
3
m
)
≤
δv
k
3
λ
3
m
,
∀
0
≤
v
3
λ
3
m
≤
r
0
,
.
.
.
f
n
(
v
1
λ
1
m
)
≤
δv
k
1
λ
1
m
,
∀
0
≤
v
1
λ
1
m
≤
r
0
.
Ï
d
,
é
v
iλ
im
∈
P
∩
∂
Ω
r
0
,
k
v
iλ
im
k
=
r
0
,
k
1
λ
1
k
1
m
=
k
R
1
t
R
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
1
(
v
2
(
s
))
ds
1
k
dτ
k
k
v
1
λ
1
m
k
≤
k
R
1
0
R
1
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
δv
k
2
λ
2
m
ds
1
k
k
k
v
1
λ
1
m
k
≤
kδ
1
k
k
v
2
k
|
2
k
−
N
|
r
0
,
1
λ
1
k
2
m
=
k
R
1
t
R
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
2
(
v
3
(
s
))
ds
1
k
dτ
k
k
v
2
λ
2
m
k
≤
kδ
1
k
k
v
3
k
|
2
k
−
N
|
r
0
,
.
.
.
(3
.
6)
DOI:10.12677/aam.2022.1175224987
A^
ê
Æ
?
Ð
•
ÿ
1
λ
1
k
nm
=
k
R
1
t
R
τ
0
kτ
k
−
N
s
N
−
1
(
C
k
−
1
N
−
1
)
−
1
f
n
(
v
1
(
s
))
ds
1
k
dτ
k
k
v
nλ
nm
k
≤
kδ
1
k
k
v
1
k
|
2
k
−
N
|
r
0
.
(3.6)
L
²
λ
im
→
+
∞
(
m
→
+
∞
),
ù
†
λ
im
→
0
+
g
ñ
,
i
= 1
,
2
,
···
,n
.
n
þ
Œ
•
,
λ
i
→
0
+
ž
,
k
v
λ
i
k→
+
∞
,i
= 1
,
2
,
···
,n
.
a
q
u
½
n
3.1
y
²
,
·
‚
k
X
e
½
n
.
½
n
3.2
b
f
i
∈
C
([0
,
+
∞
)
,
[0
,
+
∞
)),
…
f
0
i
=
∞
, f
∞
i
=0,
K
é
¤
k
λ
i
>
0,
k
-
Hessian
•
§
(1.1)
•
3
˜
‡
š
‚
5
»
•
à
)
u
=(
u
λ
1
,u
λ
2
,
···
,u
λ
n
)
÷
v
lim
λ
i
→
0
+
k
u
λ
i
k
=0,
Ù
¥
i
= 1
,
2
,
···
,n
.
ë
•
©
z
[1]Trudinger,N.andWang,X.(2008)TheMonge-Amp`ereEquationsandItsGeometricAppli-
cations.
HandbookofGeometricAnalysis
,
1
,467-524.
[2]Shivaji,R.,Sim,I.andSon,B.(2017)AUniquenessResultforaSemipositone
p
-Laplacian
ProblemontheExteriorofaBall.
JournalofMathematicalAnalysisandApplications
,
445
,
459-475.https://doi.org/10.1016/j.jmaa.2016.07.029
[3]Zhang, Z. (2015)BoundaryBehavior of Large Solutionstothe Monge-Amp`ereEquations with
Weight.
JournalofDifferentialEquations
,
259
,2080-2100.
https://doi.org/10.1016/j.jde.2015.03.040
[4]Zhang,Z.(2018)LargeSolutionstotheMonge-Amp`ereEquationswithNonlinearGradient
Terms:ExistenceandBoundaryBehavior.
JournalofDifferentialEquations
,
264
,263-296.
https://doi.org/10.1016/j.jde.2017.09.010
[5]Zhang, Z.andQi, Z.(2015)OnaPower-TypeCoupledofMonge-Amp`ere Equations.
Topolog-
icalMethodsinNonlinearAnalysis
,
46
,717-729.
[6]Lazer,A.andMcKenna,P.(1996)OnSingularBoundaryValueProblemsfortheMonge
Amp`ereOperator.
JournalofMathematicalAnalysisandApplications
,
197
,342-362.
https://doi.org/10.1006/jmaa.1996.0024
[7]Feng,M.(2021)ConvexSolutionsofMonge-Amp`ereEquationsandSystems:Existence,U-
niquenessandAsymptoticBehavior.
AdvancesinNonlinearAnalysis
,
10
,371-399.
https://doi.org/10.1515/anona-2020-0139
[8]Feng,M.andZhang,X.(2021)ACoupledSystemof
k
-HessianEquations.
Mathematical
MethodsintheAppliedSciences
,
44
,7377-7394.https://doi.org/10.1002/mma.6053
[9]Gao, C.,He, X.andRan, M.(2021)On aPower-Type CoupledSystem of
k
-HessianEquations.
QuaestionesMathematicae
,
44
,1593-1612.https://doi.org/10.2989/16073606.2020.1816586
[10]Zhang, X. and Feng, M. (2019) TheExistence and Asymptotic Behavior of Boundary Blow-Up
Solutionstothe
k
-HessianEquation.
JournalofDifferentialEquations
,
267
,4626-4672.
https://doi.org/10.1016/j.jde.2019.05.004
DOI:10.12677/aam.2022.1175224988
A^
ê
Æ
?
Ð
•
ÿ
[11]Wan,H.,Shi,Y.andQiao,X.(2021)EntireLargeSolutionstothe
k
-HessianEquationswith
Weights:Existence,UniquenessandAsymptoticBehavior.
JournalofMathematicalAnalysis
andApplications
,
503
,ArticleID:125301.https://doi.org/10.1016/j.jmaa.2021.125301
[12]Sun, H.andFeng,M. (2018) BoundaryBehavior of
k
-ConvexSolutionsforSingular
k
-Hessian
Equations.
NonlinearAnalysis
,
176
,141-156.https://doi.org/10.1016/j.na.2018.06.010
[13]Trudinger, N. (1995)On the Dirichlet Problem for HessianEquations.
ActaMathematica
,
175
,
151-164.https://doi.org/10.1007/BF02393303
[14]Ji, X.and Bao, J.(2010) Necessaryand Sufficient Condition onSolvabilityforHessian Inequal-
ities.
ProceedingsoftheAMS
,
138
,175-188.https://doi.org/10.1090/S0002-9939-09-10032-1
[15]Guo,D.andLakshmikantham,V.(1988)NonlinearProblemsinAbstractCones.Academic
Press,Inc.,Cambridge,MA.
DOI:10.12677/aam.2022.1175224989
A^
ê
Æ
?
Ð
map