设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2022,12(2),257-263
PublishedOnlineFebruary2022inHans.//www.abtbus.com/journal/pm
https://doi.org/10.12677/pm.2022.122030
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
>>>
ááá
LLL
§§§
ooo
ÔÔÔ
>>>
§§§
ÛÛÛ
]]]
∗
§§§
XXX
„„„
#
õ
“
‰
Œ
Æ
ê
Æ
‰
ÆÆ
§
#
õ
¿
°
7
à
Â
v
F
Ï
µ
2022
c
1
3
F
¶
¹
^
F
Ï
µ
2022
c
2
3
F
¶
u
Ù
F
Ï
µ
2022
c
2
10
F
Á
‡
©
Ì
‡
ï
ÄÛ
Ü
È
i
ù6
/
Œ
ØC
f
6
/
ƒ
'
5
Ÿ
"
Ä
k
§
Ï
L
Weingarten
ú
ª
§
‰
Ñ
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
R
†
©
Ù
D
⊥
Œ
È
¿
‡
^
‡
A
FZ
W
∈D
⊥
"
Ù
g
§
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
¤
•
·
Ü
ÿ
/
Œ
ØC
f
6
/
¿
©
^
‡
"
'
…
c
i
ù6
/
§
Û
Ü
È
§
Œ
ØC
f
6
/
§
R
†
©
Ù
§
·
Ü
ÿ
/
Semi-InvariantSubmanifoldsofaLocally
ProductRiemannianManifold
LizeBian,ShuwenLi,YongHe
∗
,ChangTian
SchoolofMathematicsScience,XinjiangNormalUniversity,UrumqiXinjiang
Received:Jan.3
rd
,2022;accepted:Feb.3
rd
,2022;published:Feb.10
th
,2022
Abstract
Inthispaper,westudythesemi-invariantsubmanifoldsofalocallyproductRie-
mannianmanifold.Firstly,forthesemi-invariantsubmanifoldsofalocallyproduct
∗
Ï
Õ
Š
ö
"
©
Ù
Ú
^
:
>
á
L
,
o
Ô
>
,
Û
]
,
X
„
.
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
[J].
n
Ø
ê
Æ
,2022,12(2):257-263.
DOI:10.12677/pm.2022.122030
>
á
L
Riemannianmanifold,thenecessaryandsufficientconditionsforitsverticaldistribu-
tiontobecompletelyintegrablearegivenbytheWeingartenformula.Secondly,a
sufficient conditionisobtained forthesemi-invariantsubmanifolds ofa locally product
Riemannianmanifoldtobemixed-geodesicsubmanifolds.
Keywords
RiemannianManifold,LocallyProduct,Semi-InvariantSubmanifolds,Vertical
Distribution,Mixed-Geodesic
Copyright
c
2022byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution International License (CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
3
‡
©
A
Û
¥
,
ä
k
E
(
J
2
=
−
I
(
I
´
ð
Ó
N
)
6
/
k
X
š
~
´
L
A
Û
5
Ÿ
.1951
c
,
Nijenhuis
ï
Ä
E
(
J
Œ
È
5
[1].1958
c
,Yano
&
Ä
˜
‡
a
q
E
(
1
w
(
F
2
=
I
(
F
6
=
±
I
),
=
’
È
(
,
¿
3
Û
Ü
‹
I
Xe
‰
Ñ
F
A
Š
1
Ú
−
1
é
A
ü
‡
Ö
©
Ù
T
+1
Ú
T
−
1
©
O
Œ
È
¿
‡
^
‡
[2].
ä
k
’
È
(
‡
©
6
/
¡
•
’
È
6
/
.1959
c
,Yano
ï
Ä
’
È
6
/
Œ
È
©
Ù
[3].
1964
c
,Hsu
é
’
È
6
/
Š
•
¡
ï
Ä
[4].
1960
c
, Tachibana
3
Û
Ü
‹
I
Xe
^
’
È
(
F
‰
Ñ
Û
Ü
È
i
ù6
/
½
Â
[5].1981
c
,
Adati
3
ï
ÄÛ
Ü
È
i
ù6
/
f
6
/
¯
K
ž
u
y
,
Û
Ü
‹
I
Xe
Û
Ü
È
i
ù6
/
†
Ù
f
6
/
'
X
Ø
éÐ
¥
y
,
u
´
l’
È
(
F
N
5
Ñ
u
½
Â
Û
Ü
È
i
ù6
/
ØC
f
6
/
Ú
‡
ØC
f
6
/
[6].
1984
c
, Bejancu
½
Â
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
[7],
d
,Matsumoto[8], Atceken
[9–13]
Ú
Gerdan[13,14]
<
ï
Ä
´
L
ù
˜
a
f
6
/
.Bejancu
Ï
L
1
Ä
/
ª
B
‰
Ñ
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
R
†
©
Ù
D
⊥
Ú
Y
²
©
Ù
D
©
O
Œ
È
¿
‡
^
‡
[7].2003
c
,
Atceken
•
|
^
1
Ä
/
ª
B
‰
Ñ
R
†
©
Ù
D
⊥
Ú
Y
²
©
Ù
D
©
O
Œ
È
Ø
Ó
¿
‡
^
‡
[9],2005
c
,Atceken
/
Ï
•
þ
©
)
•{
q
D
Ú
D
⊥
©
O
Œ
È
#
¿
‡
^
‡
[10].
©
ò
Ï
L
Weingarten
ú
ª
‰
Ñ
R
†
©
Ù
D
⊥
Œ
È
¿
‡
^
‡
A
FZ
W
∈D
⊥
,
ù
í
2
Atceken
3
©
z
[10]
¥
¤
A
FZ
W
= 0
ù
˜
(
Ø
,
4
Œ
/
´
L
R
†
©
Ù
Œ
È
5
.
ÿ
/
f
6
/
´
i
ù
A
Û
¥
˜
a
š
~
k
ï
Ä
d
Š
f
6
/
,
Û
Ü
È
i
ù6
/
ÿ
/
Œ
ØC
f
6
/
•
´›
©
-
‡
.
ÿ
/
Œ
ØC
f
6
/
Ï
•
Ù
©
Ù
À
Ø
Ó
,
k
n
«
a
.
,
=
·
Ü
ÿ
/
Œ
ØC
f
6
/
,
D
⊥
ÿ
/
Œ
ØC
f
6
/
,
D
ÿ
/
Œ
ØC
f
6
/
[10].
DOI:10.12677/pm.2022.122030258
n
Ø
ê
Æ
>
á
L
©
,
˜
‡
¯
K
´
&
ÄÛ
Ü
È
i
ù6
/
Œ
ØC
f
6
/
¤
•
·
Ü
ÿ
/
Œ
ØC
f
6
/
¿
©
^
‡
.
Ä
u
±
þ
©
Û
,
©
ï
Ä
Œ
±
˜
«
E
ä
k
R
†
©
Ù
Œ
È
Œ
ØC
f
6
/
k
•
{
,
„
Œ
±
˜
«
E
Û
Ü
È
i
ù6
/
·
Ü
ÿ
/
Œ
ØC
f
6
/
k
å
»
.
2.
ý
•
£
!
Ì
‡
0
ï
Ä
¤
I
Ä
V
g
,
¿
½
Î
Ò
.
(
¯
M,
¯
g
)
Ú
(
M,g
)
©
O
´
m
+
n
‘
Ú
m
‘
i
ù6
/
, (
M,g
)
´
(
¯
M,
¯
g
)
åE
\
f
6
/
.
T
¯
M
Ú
TM
©
OL
«
(
¯
M,
¯
g
)
Ú
(
M,g
)
ƒ
m
,
¯
∇
Ú
∇
©
O
´
(
¯
M,
¯
g
)
Ú
(
M,g
)
þ
é
ä
.
-
T
⊥
M
L
«
(
M,g
)
{
m
,
=
T
¯
M
=
TM
⊕
T
⊥
M
,
∇
⊥
L
«
(
M,g
)
þ
{
é
ä
.
(
¯
M,
¯
g
)
å
‰
\
f
6
/
(
M,g
)
Gauss
ú
ª
•
[15]:
¯
∇
X
Y
=
∇
X
Y
+
B
(
X,Y
)
,
(1)
Ù
¥
X,Y
∈
TM
,
∇
X
Y
∈
TM
,
B
(
X,Y
)
∈
T
⊥
M
.
(
¯
M,
¯
g
)
å
‰
\
f
6
/
(
M,g
)
Weingarten
ú
ª
•
[15]:
¯
∇
X
ξ
=
−
A
ξ
X
+
∇
⊥
X
ξ,
(2)
Ù
¥
X
∈
TM
,
ξ
∈
T
⊥
M
,
A
ξ
X
∈
TM
,
∇
⊥
X
ξ
∈
T
⊥
M
.
¯
∇
X
Y
'
u
(
M,g
)
{
•
©
þ
B
(
X,Y
)
Ú
¯
∇
X
ξ
'
u
(
M,g
)
ƒ
•
©
þ
A
ξ
X
k
X
e
'
X
[15]:
¯
g
(
A
ξ
X,Y
) =¯
g
(
B
(
X,Y
)
,ξ
) =¯
g
(
X,A
ξ
Y
)
.
(3)
½½½
ÂÂÂ
2.1
[5]
(
¯
M,
¯
g
)
´
i
ù6
/
,
F
´
(
¯
M,
¯
g
)
þ
’
È
(
,
e
∀
¯
X,
¯
Y
∈
T
¯
M
,
k
¯
g
(
F
¯
X,F
¯
Y
) =¯
g
(
¯
X,
¯
Y
)
,
(4)
K
¡
(
¯
M,
¯
g,F
)
´
’
È
i
ù6
/
.
½½½
ÂÂÂ
2.2
[5]
(
¯
M,
¯
g,F
)
´
’
È
i
ù6
/
,
e
¯
∇
F
= 0,
K
¡
(
¯
M,
¯
g,F
)
´
Û
Ü
È
i
ù6
/
.
½½½
ÂÂÂ
2.3
[7]
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
åE
\
f
6
/
,
e
(
M,g
)
R
†
©
Ù
D
⊥
Ú
Y
²
©
Ù
D
÷
v
:
(i)
TM
=
D
⊥
⊕D
;
(ii)
F
(
D
) =
D
;
(iii)
F
(
D
⊥
)
⊂
T
⊥
M
,
K
¡
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
.
dim
(
D
⊥
) = 0
ž
,
¡
(
M,g
)
•
ØC
f
6
/
[6];
dim
(
D
) = 0
ž
,
¡
(
M,g
)
•
‡
ØC
f
6
/
[6].
(
M,g
)
´
Œ
ØC
f
6
/
ž
,
V
´
F
(
D
⊥
)
3
T
⊥
M
¥
Ö
©
Ù
,
=
T
⊥
M
=
F
(
D
⊥
)
⊕V
.
···
KKK
2.1
[15]
N
B
:
TM
×
TM
→
T
⊥
M
´
(
M,g
)
3
(
¯
M,
¯
g
)
¥
1
Ä
/
ª
,
K
B
DOI:10.12677/pm.2022.122030259
n
Ø
ê
Æ
>
á
L
´
é
¡
…
C
∞
V
‚
5
,
=
∀
X,Y
∈
TM
,
k
:
(i)
B
(
X,Y
) =
B
(
Y,X
),
(ii)
B
(
aX,bY
) =
abB
(
X,Y
).
½½½
ÂÂÂ
2.4
[15]
(
M,g
)
´
(
¯
M,
¯
g
)
åE
\
f
6
/
,
e
(
M,g
)
3
(
¯
M,
¯
g
)
¥
1
Ä
/
ª
B
= 0,
K
¡
(
M,g
)
•
(
¯
M,
¯
g
)
ÿ
/
f
6
/
.
½½½
ÂÂÂ
2.5
[9]
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
e
∀
X
∈D
,
Z
∈D
⊥
,
k
B
(
X,Z
) = 0,
K
¡
(
M,g
)
´
(
¯
M,
¯
g,F
)
·
Ü
ÿ
/
Œ
ØC
f
6
/
.
½½½
ÂÂÂ
2.6
[10]
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
e
∀
X,Y
∈D
,
Z,W
∈D
⊥
,
k
B
(
Z,W
)=0(
½
B
(
X,Y
) =0),
K
¡
(
M,g
)
´
(
¯
M,
¯
g,F
)
D
⊥
(
½
D
)
ÿ
/
Œ
ØC
f
6
/
.
½½½
ÂÂÂ
2.7
[16]
D
l
•
m
‘
¢
‡
©
6
/
M
l
‘
©
Ù
,
e
∀
X,Y
∈D
l
,
k
Lie
)
Ò
[
X,Y
]
∈D
l
,
K
¡
©
Ù
D
l
÷
v
Frobenius
^
‡
.
ÚÚÚ
nnn
2.1
[16]
D
l
•
m
‘
¢
‡
©
6
/
M
l
‘
©
Ù
,
K
©
Ù
D
l
Œ
È
d
u
©
Ù
D
l
÷
v
Frobenius
^
‡
.
···
KKK
2.2
[5]
(
¯
M,
¯
g,F
)
´
Û
Ü
È
i
ù6
/
,
K
∀
¯
X,
¯
Y
∈
T
¯
M
,
k
¯
∇
¯
X
(
F
¯
Y
) =
F
(
¯
∇
¯
X
¯
Y
)
.
(5)
···
KKK
2.3
[9]
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
K
∀
Z,W
∈D
⊥
,
k
A
FZ
W
=
−
A
FW
Z.
(6)
ÚÚÚ
nnn
2.2
[9]
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
T
⊥
M
=
F
(
D
⊥
)
⊕V
,
K
D
⊥
Œ
È
…
=
∀
X
∈D
,Z
∈D
⊥
,
k
B
(
X,Z
)
∈V
.
(7)
3.
Œ
ØC
f
6
/
Œ
ØC
f
6
/
ƒ
m
Ú
©
Ù
k
›
©
—
ƒ
'
X
,
Ï
d
Ï
L
©
Ù
5
•
x
Œ
ØC
f
6
/
´
š
~
k
¿
Â
.
!
Ì
‡
&
ÄÛ
Ü
È
i
ù6
/
Œ
ØC
f
6
/
R
†
©
Ù
D
⊥
Œ
È
¿
‡
^
‡
±
9
Œ
Ø
C
f
6
/
¤
•
·
Ü
ÿ
/
Œ
ØC
f
6
/
¿
©
^
‡
.
···
KKK
3.1
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
K
∀
Z,W
∈D
⊥
,
X
∈D
,
k
¯
g
([
Z,W
]
,FX
) = 2¯
g
(
A
FZ
W,X
)
.
(8)
DOI:10.12677/pm.2022.122030260
n
Ø
ê
Æ
>
á
L
yyy
²²²
Š
â
½
Â
2.3,
∀
Z,W
∈D
⊥
,
k
FZ,FW
∈
T
⊥
M
,
2
d
(2),
Œ
¯
∇
Z
(
FW
) =
−
A
FW
Z
+
∇
⊥
Z
FW,
(9)
¯
∇
W
(
FZ
) =
−
A
FZ
W
+
∇
⊥
W
FZ.
(10)
d
(9)
~
(10),
Œ
¯
∇
Z
(
FW
)
−
¯
∇
W
(
FZ
) =
−
A
FW
Z
+
A
FZ
W
+
∇
⊥
Z
FW
−∇
⊥
W
FZ.
(11)
du
W,Z
∈D
⊥
⊂
TM
⊂
T
¯
M
,
A^
(5),
Œ
±
¯
∇
Z
(
FW
)
−
¯
∇
W
(
FZ
) =
F
(
¯
∇
Z
W
)
−
F
(
¯
∇
W
Z
) =
F
[
Z,W
]
.
(12)
Š
â
(6),
∀
Z,W
∈D
⊥
,
k
−
A
FW
Z
+
A
FZ
W
= 2
A
FZ
W.
(13)
ò
(12)
Ú
(13)
“
\
(11),
F
[
Z,W
] = 2
A
FZ
W
+
∇
⊥
Z
FW
−∇
⊥
W
FZ.
(14)
Ï
•
∇
⊥
Z
FW
−∇
⊥
W
FZ
∈
T
⊥
M,X
∈D⊂
TM
,
¤
±
¯
g
(
∇
⊥
Z
FW
−∇
⊥
W
FZ,X
) =0,
d
(14)
Œ
±
¯
g
(
F
[
Z,W
]
,X
) = 2¯
g
(
A
FZ
W,X
)
.
(15)
Š
â
(4),
¿
5
¿
F
2
=
I
,
k
¯
g
(
F
[
Z,W
]
,X
) =¯
g
(
F
2
[
Z,W
]
,FX
) =¯
g
([
Z,W
]
,FX
)
.
(16)
d
(16)
Ú
(15),
´
¯
g
([
Z,W
]
,FX
) = 2¯
g
(
A
FZ
W,X
)
.
½½½
nnn
3.1
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
K
D
⊥
Œ
È
…
=
∀
Z,W
∈D
⊥
,
k
A
FZ
W
∈D
⊥
.
yyy
²²²
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
d
Ú
n
2.1
Œ
•
,
D
⊥
Œ
È
d
u
[
Z,W
]
∈D
⊥
,
l
∀
X
∈D
,
k
¯
g
([
Z,W
]
,FX
) = 0,
2
d
·
K
3.1,
ù
d
u
A
FZ
W
∈D
⊥
,
=
D
⊥
Œ
È
…
=
A
FZ
W
∈D
⊥
,
½
n
y
.
½½½
nnn
3.2
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
e
D
⊥
Œ
È
,
…
F
(
D
⊥
) =
T
⊥
M
,
K
(
M,g
)
´
(
¯
M,
¯
g,F
)
·
Ü
ÿ
/
Œ
ØC
f
6
/
.
yyy
²²²
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
Œ
ØC
f
6
/
,
Š
â
(3),
∀
Z,W
∈D
⊥
,
X
∈D
,
k
¯
g
(
A
FZ
W,X
) =¯
g
(
B
(
X,W
)
,FZ
)
.
(17)
DOI:10.12677/pm.2022.122030261
n
Ø
ê
Æ
>
á
L
d
·
K
3.1
Ú
(17),
´
¯
g
([
Z,W
]
,FX
) = 2¯
g
(
B
(
X,W
)
,FZ
)
.
(18)
Š
â
Ú
n
2.2,
D
⊥
Œ
È
d
u
B
(
X,W
)
∈V
,
2
d
F
(
D
⊥
)=
T
⊥
M
,
=
T
⊥
M
¥
Ø
•
3
©
Ù
V
,
(18)
¥
B
(
X,W
) = 0.
l
d
½
Â
2.5
Œ
•
,(
M,g
)
´
(
¯
M,
¯
g,F
)
·
Ü
ÿ
/
Œ
ØC
f
6
/
,
½
n
y
.
ííí
ØØØ
3.1
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
·
Ü
ÿ
/
Œ
ØC
f
6
/
,
K
(
M,g
)
R
†
©
Ù
D
⊥
Œ
È
.
ííí
ØØØ
3.2
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
·
Ü
ÿ
/
Œ
ØC
f
6
/
,
K
∀
Z
∈D
⊥
,
X
∈D
,
ξ
∈
T
⊥
M
,
k
A
ξ
Z
∈D
⊥
,
A
ξ
X
∈D
.
ííí
ØØØ
3.3
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
D
⊥
ÿ
/
Œ
ØC
f
6
/
,
K
∀
Z
∈D
⊥
,
ξ
∈
T
⊥
M
,
k
A
ξ
Z
∈D
.
ííí
ØØØ
3.4
(
M,g
)
´
Û
Ü
È
i
ù6
/
(
¯
M,
¯
g,F
)
D
ÿ
/
Œ
ØC
f
6
/
,
K
∀
X
∈D
,
ξ
∈
T
⊥
M
,
k
A
ξ
X
∈D
⊥
.
4.
(
Ø
©
‰
Ñ
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
R
†
©
Ù
D
⊥
Œ
È
¿
‡
^
‡
,
=
A
FZ
W
∈D
⊥
,
l
Œ
±
˜
«
E
ä
k
R
†
©
Ù
Œ
È
Œ
ØC
f
6
/
k
•{
.
©
„
Û
Ü
È
i
ù6
/
Œ
ØC
f
6
/
¤
•
·
Ü
ÿ
/
Œ
ØC
f
6
/
¿
©
^
‡
,
Œ
±
d
d
5
E
Û
Ü
È
i
ù6
/
·
Ü
ÿ
/
Œ
ØC
f
6
/
.
Ä
7
‘
8
I
[
g
,
‰
Æ
Ä
7
(11761069).
ë
•
©
z
[1]Nijenhuis, A. (1951)
X
n
−
1
-Forming Sets of Eigenvectors.
IndagationesMathematicae
,
54
,200-
212.https://doi.org/10.1016/S1385-7258(51)50028-8
[2]Yano,K.(1958)OnWalkerDifferentiationinAlmostProductorAlmostComplexSpaces.
IndagationesMathematicae
,
61
,573-580.https://doi.org/10.1016/S1385-7258(58)50082-1
DOI:10.12677/pm.2022.122030262
n
Ø
ê
Æ
>
á
L
[3]Yano, K.(1959)AffineConnexions inanAlmostProduct Space.
KodaiMathematicalJournal
,
11
,1-24.https://doi.org/10.2996/kmj/1138844134
[4]Hsu,C.(1964)RemarksonCertainAlmostProductSpaces.
PacificJournalofMathematics
,
14
,163-176.https://doi.org/10.2140/pjm.1964.14.163
[5]Tachibana,S.(1960)SomeTheoremsonLocallyRiemannianSpaces.
TohokuMathematical
Journal
,
12
,281-292.https://doi.org/10.2748/tmj/1178244441
[6]Adati,T.(1981)Submanifolds ofanAlmostProduct Riemannian Manifold.
KodaiMathemat-
icalJournal
,
4
,327-343.https://doi.org/10.2996/kmj/1138036379
[7]Bejancu, A. (1984) Semi-Invariant Submanifolds of Locally Product Riemannian Manifold.
An
UnivTimisoaraSerStiintMathAl
,
22
,3-11.
[8]Matsumoto,K.(1982)OnSubmanifoldsofLocallyProductRiemannianManifolds.
TRU
Mathematics
,
18
,145-157.
[9]Sahin,B.andAtceken,M.(2003)Semi-InvariantSubmanifoldsofRiemannianProductMan-
ifold.
BalkanJournalofGeometryandItsApplications
,
24
,549-558.
[10]Atceken, M.(2005) Submanifolds ofRiemannian Product Manifolds.
TurkishJournalofMath-
ematics
,
29
,389-401.
[11]Atceken, M.(2010)Geometry ofSemi-Invariant Submanifoldsofa RiemannianProductMan-
ifold.
MathematicaMoravica
,
14
,23-34.https://doi.org/10.5937/MatMor1001023A
[12]Atceken, M.(2008)AConditionforWarpedProductSemi-Invariant SubmanifoldstoBeRie-
mannianProductSemi-InvariantSubmanifoldsinLocallyRiemannianProductManifolds.
TurkishJournalofMathematics
,
32
,349-362.
[13]Tastan, H.M.andGerdan, S.(2018)DoublyTwistedProductSemi-InvariantSubmanifoldsof a
Locally Product RiemannianManifold.
MathematicalAdvancesinPureandAppliedSciences
,
1
,23-26.
[14]Traore,M.,Tastan,H.M. andGerdan,S.(2021) MultiplyWarped ProductGeneralizedSemi-
InvariantSubmanifolds.
InternationalElectronicJournalofGeometry
,
14
,313-330.
[15]
x
I
,
!
˜
X
.
i
ù
A
Û
Ð
Ú
[M].
®
:
p
˜
Ñ
‡
,2004.
[16]
•
‘
ƒ
.
‡
©
6
/
Ð
Ú
[M].
®
:
p
˜
Ñ
‡
,2001.
DOI:10.12677/pm.2022.122030263
n
Ø
ê
Æ
map