函数计算序列
直接计算方法
离散伴随方法
x 1
∇ x 1 = [ 1 0 0 ]
x ¯ i = 0 , i = 1 , 2 , 3
x 2
∇ x 2 = [ 0 1 0 ]
v ¯ i = 0 , i = 1 , 2 , 3 , 4
x 3
∇ x 3 = [ 0 0 1 ]
y ¯ = 1
v 1 = x 1 + x 2
∇ v 1 = ∇ x 1 + ∇ x 2
v ¯ 4 = v ¯ 4 − y ¯ ⋅ sin v 4
v 2 = v 1 + x 3
∇ v 2 = ∇ v 1 + ∇ x 3
v ¯ 2 = v ¯ 2 + v 3 ⋅ v ¯ 4 , v ¯ 3 = v ¯ 3 + v 2 ⋅ v ¯ 4
v 3 = x 3
∇ v 3 = ∇ x 3 / ( 2 x 3 )
x ¯ 3 = x ¯ 3 + v ¯ 3 / ( 2 x 3 )
v 4 = v 2 ⋅ v 3
∇ v 4 = ∇ v 2 ⋅ v 3 + v 2 ⋅ ∇ v 3
v ¯ 1 = v ¯ 1 + v ¯ 2 , x ¯ 3 = x ¯ 3 + v ¯ 2
y = cos v 4
∇ y = − ∇ v 4 ⋅ sin v 4
x ¯ 1 = x ¯ 1 + v ¯ 1 , x ¯ 2 = x ¯ 2 + v ¯ 1