[1] |
Schroder, K. and Tschopp, J. (2010) The Inflammasomes. Cell, 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040 |
[2] |
Gritsenko, A., Green, J.P., Brough, D. and Lopez-Castejon, G. (2020) Mechanisms of NLRP3 Priming in Inflammaging and Age Related Diseases. Cytokine & Growth Factor Reviews, 55, 15-25. https://doi.org/10.1016/j.cytogfr.2020.08.003 |
[3] |
Swanson, K.V., Deng, M. and Ting, J.P.-Y. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. https://doi.org/10.1038/s41577-019-0165-0 |
[4] |
Sharma, M. and de Alba, E. (2021) Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. International Journal of Molecular Sciences, 22, Article 872. https://doi.org/10.3390/ijms22020872 |
[5] |
Green, J.P., Yu, S., Martín-Sánchez, F., Pelegrin, P., Lopez-Castejon, G., Lawrence, C.B., et al. (2018) Chloride Regulates Dynamic NLRP3-Dependent ASC Oligomerization and Inflammasome Priming. Proceedings of the National Academy of Sciences, 115, E9371-E9380. https://doi.org/10.1073/pnas.1812744115 |
[6] |
Murakami, T., Ockinger, J., Yu, J., Byles, V., McColl, A., Hofer, A.M., et al. (2012) Critical Role for Calcium Mobilization in Activation of the NLRP3 Inflammasome. Proceedings of the National Academy of Sciences, 109, 11282-11287. https://doi.org/10.1073/pnas.1117765109 |
[7] |
Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M. and Núñez, G. (2013) K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. Immunity, 38, 1142-1153. |
[8] |
Zhong, Z., Liang, S., Sanchez-Lopez, E., He, F., Shalapour, S., Lin, X., et al. (2018) New Mitochondrial DNA Synthesis Enables NLRP3 Inflammasome Activation. Nature, 560, 198-203. https://doi.org/10.1038/s41586-018-0372-z |
[9] |
Gaidt, M.M. and Hornung, V. (2018) The NLRP3 Inflammasome Renders Cell Death Pro-Inflammatory. Journal of Molecular Biology, 430, 133-141. https://doi.org/10.1016/j.jmb.2017.11.013 |
[10] |
Campden, R.I. and Zhang, Y. (2019) The Role of Lysosomal Cysteine Cathepsins in NLRP3 Inflammasome Activation. Archives of Biochemistry and Biophysics, 670, 32-42. https://doi.org/10.1016/j.abb.2019.02.015 |
[11] |
Fry, A.M., O’Regan, L., Sabir, S.R. and Bayliss, R. (2012) Cell Cycle Regulation by the NEK Family of Protein Kinases. Journal of Cell Science, 125, 4423-4433. https://doi.org/10.1242/jcs.111195 |
[12] |
He, Y., Zeng, M.Y., Yang, D., Motro, B. and Núñez, G. (2016) NEK7 Is an Essential Mediator of NLRP3 Activation Downstream of Potassium Efflux. Nature, 530, 354-357. https://doi.org/10.1038/nature16959 |
[13] |
Shi, H., Wang, Y., Li, X., Zhan, X., Tang, M., Fina, M., et al. (2015) NLRP3 Activation and Mitosis Are Mutually Exclusive Events Coordinated by NEK7, a New Inflammasome Component. Nature Immunology, 17, 250-258. https://doi.org/10.1038/ni.3333 |
[14] |
Sharif, H., Wang, L., Wang, W.L., Magupalli, V.G., Andreeva, L., Qiao, Q., et al. (2019) Structural Mechanism for NEK7-Licensed Activation of NLRP3 Inflammasome. Nature, 570, 338-343. https://doi.org/10.1038/s41586-019-1295-z |
[15] |
Broz, P. and Dixit, V.M. (2016) Inflammasomes: Mechanism of Assembly, Regulation and Signalling. Nature Reviews Immunology, 16, 407-420. https://doi.org/10.1038/nri.2016.58 |
[16] |
Ayalon, R. and Beck, L.H. (2013) Membranous Nephropathy: Not Just a Disease for Adults. Pediatric Nephrology, 30, 31-39. https://doi.org/10.1007/s00467-013-2717-z |
[17] |
Ponticelli, C. and Glassock, R.J. (2014) Glomerular Diseases: Membranous Nephropathy—A Modern View. Clinical Journal of the American Society of Nephrology, 9, 609-616. https://doi.org/10.2215/cjn.04160413 |
[18] |
Lai, W.L., Yeh, T.H., Chen, P.M., Chan, C.K., Chiang, W.C., Chen, Y.M., et al. (2015) Membranous Nephropathy: A Review on the Pathogenesis, Diagnosis, and Treatment. Journal of the Formosan Medical Association, 114, 102-111. https://doi.org/10.1016/j.jfma.2014.11.002 |
[19] |
Peh, C.A. (2013) Commentary on the KDIGO Clinical Practice Guideline for Glomerulonephritis. Nephrology, 18, 483-484. https://doi.org/10.1111/nep.12091 |
[20] |
Sinico, R.A., Mezzina, N., Trezzi, B., Ghiggeri, G. and Radice, A. (2015) Immunology of Membranous Nephropathy: From Animal Models to Humans. Clinical and Experimental Immunology, 183, 157-165. https://doi.org/10.1111/cei.12729 |
[21] |
D’Arienzo, A., Andreani, L., Sacchetti, F., Colangeli, S. and Capanna, R. (2019) Hereditary Multiple Exostoses: Current Insights. Orthopedic Research and Reviews, 11, 199-211. https://doi.org/10.2147/orr.s183979 |
[22] |
Simon, P., Ramée, M., Autuly, V., Laruelle, E., Charasse, C., Cam, G., et al. (1994) Epidemiology of Primary Glomerular Diseases in a French Region. Variations According to Period and Age. Kidney International, 46, 1192-1198. https://doi.org/10.1038/ki.1994.384 |
[23] |
Maisonneuve, P., Agodoa, L., Gellert, R., Stewart, J.H., Buccianti, G., Lowenfels, A.B., et al. (2000) Distribution of Primary Renal Diseases Leading to End-Stage Renal Failure in the United States, Europe, and Australia/New Zealand: Results from an International Comparative Study. American Journal of Kidney Diseases, 35, 157-165. https://doi.org/10.1016/s0272-6386(00)70316-7 |
[24] |
Ronco, P. and Debiec, H. (2015) Pathophysiological Advances in Membranous Nephropathy: Time for a Shift in Patient’s Care. The Lancet, 385, 1983-1992. https://doi.org/10.1016/s0140-6736(15)60731-0 |
[25] |
南蕾, 玄红运, 米焱, 等. NLRP3炎症小体参与特发性膜性肾病发生的研究[J]. 中国免疫学杂志, 2024, 40(2): 366-371. |
[26] |
Ren, Y., Wang, D., Lu, F., Zou, X., Xu, L., Wang, K., et al. (2018) Coptidis Rhizoma Inhibits NLRP3 Inflammasome Activation and Alleviates Renal Damage in Early Obesity-Related Glomerulopathy. Phytomedicine, 49, 52-65. https://doi.org/10.1016/j.phymed.2018.05.019 |
[27] |
Liu, B., Lu, R., Li, H., Zhou, Y., Zhang, P., Bai, L., et al. (2019) Zhen-Wu-Tang Ameliorates Membranous Nephropathy Rats through Inhibiting NF-κB Pathway and NLRP3 Inflammasome. Phytomedicine, 59, Article 152913. https://doi.org/10.1016/j.phymed.2019.152913 |
[28] |
Yang, S., Han, Y., He, J., Yang, M., Zhang, W., Zhan, M., et al. (2020) Mitochondria Targeted Peptide SS-31 Prevent on Cisplatin-Induced Acute Kidney Injury via Regulating Mitochondrial ROS-NLRP3 Pathway. Biomedicine & Pharmacotherapy, 130, Article 110521. https://doi.org/10.1016/j.biopha.2020.110521 |
[29] |
Cremoni, M., Brglez, V., Perez, S., Decoupigny, F., Zorzi, K., Andreani, M., et al. (2020) Th17-Immune Response in Patients with Membranous Nephropathy Is Associated with Thrombosis and Relapses. Frontiers in Immunology, 11, Article 574997. https://doi.org/10.3389/fimmu.2020.574997 |
[30] |
Li, H., Wu, H., Guo, Q., Yu, H., Xu, Y., Yu, J., et al. (2020) Myeloid-Derived Suppressor Cells Promote the Progression of Primary Membranous Nephropathy by Enhancing Th17 Response. Frontiers in Immunology, 11, Article 1777. https://doi.org/10.3389/fimmu.2020.01777 |
[31] |
Motavalli, R., Etemadi, J., Soltani-Zangbar, M.S., Ardalan, M., Kahroba, H., Roshangar, L., et al. (2021) Altered Th17/Treg Ratio as a Possible Mechanism in Pathogenesis of Idiopathic Membranous Nephropathy. Cytokine, 141, Article 155452. https://doi.org/10.1016/j.cyto.2021.155452 |
[32] |
Vilaysane, A., Chun, J., Seamone, M.E., Wang, W., Chin, R., Hirota, S., et al. (2010) The NLRP3 Inflammasome Promotes Renal Inflammation and Contributes to CKD. Journal of the American Society of Nephrology, 21, 1732-1744. https://doi.org/10.1681/asn.2010020143 |
[33] |
Ke, B., Shen, W., Fang, X. and Wu, Q. (2017) The NLPR3 Inflammasome and Obesity‐Related Kidney Disease. Journal of Cellular and Molecular Medicine, 22, 16-24. https://doi.org/10.1111/jcmm.13333 |
[34] |
Li, S., Lin, Q., Shao, X., Mou, S., Gu, L., Wang, L., et al. (2019) NLRP3 Inflammasome Inhibition Attenuates Cisplatin-Induced Renal Fibrosis by Decreasing Oxidative Stress and Inflammation. Experimental Cell Research, 383, Article 111488. https://doi.org/10.1016/j.yexcr.2019.07.001 |
[35] |
Guo, J., Shi, T., Cui, X., Rong, Y., Zhou, T., Zhang, Z., et al. (2014) Effects of Silica Exposure on the Cardiac and Renal Inflammatory and Fibrotic Response and the Antagonistic Role of Interleukin-1 Beta in C57BL/6 Mice. Archives of Toxicology, 90, 247-258. https://doi.org/10.1007/s00204-014-1405-5 |
[36] |
Fervenza, F.C., Appel, G.B., Barbour, S.J., et al. (2019) Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy. The New England Journal of Medicine, 381, 36-46. |